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ABSTRACT

An error analysis study was conducted in order to assess the currently achievable
accuracies and the future anticipated improvements in the estimation of geopotential
differences over intercontinental locations. Extending the ideas put forward by Colombo
(1980), an observation/estimation scheme was proposed and studied, whereby gravity
disturbance measurements on the Earth's surface, in caps surrounding the estimation
points, are combined with corresponding data in caps directly over these points at the
altitude of a low orbiting satellite, for the estimation of the geopotential difference between
the terrestrial stations. The gravity disturbance data at altitude are inferred from GPS
measurements made from the low orbiter to the high-altitude GPS satellites, in a multiple-
high-single-low Satellite-to-Satellite Tracking (SST) configuration.

The mathematical modeling required to relate the primary observables to the
parameters to be estimated, was studied both for the terrestrial data and the data at altitude.
Emphasis was placed on the examination of systematic effects and on the corresponding
reductions that need to be applied to the measurements to avoid systematic errors. For the
gravitational accelerations inferred from SST data, a mismodeling related to a centrifugal
acceleration term was identified and corrected. Alternative formulations related to the
sampling (or discretion) and the propagated errors arising in the truncation theory
considerations were derived. Recurrence relations for the altitude generalized truncation
coefficients implied by Hotine's kernel, and for the degree variances implied by a first-
order Gauss-Markov covariance model were originally developed in this study.

The error estimation for the geopotential differences was performed using both
truncation theory and least-squares collocation with ring-averages, in case observations on
the Earth's surface only are used. The error analysis indicated that with the currently
available global geopotential model OSU89B and with gravity disturbance data in 2° caps
surrounding the estimation points, the error of the geopotential difference arising from
errors in the reference model and the cap data is about 23 kgal cm, for 30° station
separation. This error is expected to reduce to about 12 kgal cm, when the lower-degree
harmonics of the reference model are improved by the incorporation of the global GPS-
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tracking data on Gravity Probe-B. The incorporation of gravity disturbance data at altitude
was studied using least-squares collocation with ring-averages. It was found that for a
low-degree (Nmax = 45) reference model, the data at the altitude of GP-B (600 km) can
improve the geopotential difference accuracy by about 7%, as compared to the use of
terrestrial data only. However, additional high-frequency observables at lower altitude are
needed to achieve the results obtainable when a high-degree reference model is used, and
to this end the gradiometer data from ARISTOTELES will provide a significant
contribution.
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CHAPTER 1

INTRODUCTION

The fundamental objective of geodesy is the accurate determination of the position
and the gravity potential of points on the surface of the Earth or in the space surrounding
the Earth. Such information is essential to support research (as well as application) in a
number of related disciplines such as geodynamics, geophysics and oceanography.

Historically, geodesists have divided the problem of position and gravity potential
determination in two parts, due to the limitations imposed both by Nature and by the
observational techniques available. In that sense, angle and distance measurements on
the Earth would provide through triangulation and trilateration the "horizontal"
coordinates (¢, A) of a point. The reference surface employed in these determinations is
the surface of an ellipsoid of revolution. The traditional practice in such determinations
(as opposed to modern integrated approaches) emphasizes on geometric principles, while
gravity field information is mainly used for the reduction of the surface measurements to
the reference ellipsoid. However, since the reference ellipsoid is a surface not physically
realizable, the third coordinate, the height of a point with respect to this surface, had to be
determined indirectly.

A rather easily accessible and naturally provided surface, the Mean Sea Surface
(MSS) or Mean Sea Level (MSL), would provide the reference surface with respect to
which geopotential numbers and heights could be reckoned. As long as the MSL, as
realized by tide gauge observations, was identified with a unique equipotential surface-the
geoid, spirit leveling (a highly accurate geodetic measurement type) and gravity
observations, would provide the geopotential number of a point. With certain
approximations involved, geopotential numbers would yield orthometric heights, while
gravimetry would provide the geoidal undulations (e.g. through Stokes' integral)
required for the computation of heigﬁts with respect to the reference ellipsoid.
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Under such operational procedures, the concepts of height and geopotential
difference become heavily inter-related; their determination constitutes the second part of
the problem mentioned in the beginning, where the physical properties of the Earth play a
dominant role. The advantage of MSL is that it provides a natural connection between
continents, enabling determination of height and geopotential differences between points
which cannot be connected by leveling. In that sense, MSS becomes the natural
reference surface for these determinations and establishes a world vertical datum.
Obviously, the entire setup heavily depends on the assumption that MSS coincides with a
unique equipotential surface of the Earth's gravity field, and on the accurate realization
and monitoring of MSL.

1.1 Vertical Datum Inconsistencies and the Impact of Modern Space
Techniques

Advances in a number of areas, that occurred during the last two decades, have
caused geodesists to reconsider the classical procedures of vertical datum definition and
height determination. Two main reasons are responsible for that:

(1) It has been well recognized by now that the MSS departs from an equipotential
surface due to the presence of the Quasi-stationary Sea Surface Topography (QSST),
whose magnitude is on the order of a meter. The presence of QSST affects the definition
of vertical datums in two ways:

(a)  Vertical datums established with respect to different tide gauge stations do not refer
(in general) to the same equipotential surface, their offsets being on the order of + v2
kgalm (1 kgal m = 10 m?/s2).

(b) If in the adjustment of a vertical network, more than one tide gauge station were
constrained to have zero elevations (e.g. the 1929 General Adjustment of the U.S.
vertical reference system), the QSST differences at these stations will cause internal
distortions that propagate throughout the adjusted network.

Laskowski (1983) has studied the effects of vertical datum inconsistencies on
various gravimetric quantities by constructing certain models for the inconsistencies,
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using also the oceanographic estimates of the QSST derived by Lisitzin (1965).
Laskowski (ibid) also studied the likely distortions that the overconstraining of the 1929
adjustment of the U.S. leveling network might have caused. He concluded that the
internal distortions are most severe near the tide gauges where incorrect zero-constraints
were imposed. On a global basis, the gravity anomaly errors implied by the vertical
datum inconsistency models he used, when analyzed harmonically, indicated that most of
the power of the gravitational signatures is concentrated below spherical harmonic degree
60.

(2) The advent of modern space techniques, such as Very Long Baseline
Interferometry (VLBI), Satellite Laser Ranging (SLR) and the Global Positioning System
(GPS), has changed fundamentally the position determination procedures.

Laser ranging to the high-altitude LAser GEOdynamic Satellite (LAGEOS) has
enabled the determination of geocentric coordinates for a number of globally (but not
evenly) distributed permanent tracking sites to accuracies at the £+ 5 cm level (Smith et al,,
1985). VLBI measurements, on the other hand, are capable of determining baseline
vectors between stations separated by 7000 km, accurate to a few centimeters, from 24-
hour observing sessions (Herring, 1986). Being a geometric technique however,
insensitive to the stations' locations with respect to the Earth's center of mass, VLBI
requires that, at least one station's geocentric coordinates in the network, be defined from
another source (e.g. from SLR observations). Finally, relative positioning using the
GPS has already proved its capability to yield baseline components accurate to 2-3 ppm
of the baseline length on a local or regional basis. With the full satellite constellation in
orbit, dual frequency receivers and orbit determination using a fiducial network of
tracking stations, it is expected that the system's performance will be at the 3 mm plus
0.01 ppm of the baseline length (Carter et al., 1989). Apart of the individual accuracy
achievements in positioning, of each of the above techniques, the recent (January 1,
1988) establishment of the International Earth Rotation Service (IERS) (Mueller, 1988)
enables the optimum combination of the results obtained by the above techniques (as well
as Lunar Laser Ranging, and Doppler techniques), and the definition and maintenance of
a Conventional Terrestrial Reference System (CTRS). The realization of such a system is
accomplished through a network of stations whose geocentric coordinates are estimated
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within a few centimeters and which constitute the Conventional Terrestrial Reference

Frame (CTRF).

The main impact of the space techniques on the problem of height determination
comes from their ability to provide all three components of the geocentric Cartesian
coordinate vector, and thus geometric (ellipsoidal) heights as well. Hence, one of the
two uses of leveling (that of providing vertical position information) becomes
unnecessary. Consequently, in the context of modern position determination techniques,
the concepts of height and geopotential difference may be well distinguished. Substantial
effort has been made during the last few years, by a number of researchers (Engelis et al.
(1985), Kearsley (1986), Schwarz et al. (1987), Rapp and Kadir (1988)) to investigate
the data requirements and the attainable accuracies in deriving orthometric height
differences from GPS-derived ellipsoidal height differences and gravimetric undulation
differences. Such procedures aim to eliminate the need for spirit leveling in regional
applications, essentially reversing the traditional geodetic practice in height determination.
The aforementioned studies indicate that orthometric height differences accurate to about
2 ppm (of the baseline length), for lines 10-70 km long, are attainable, provided good
gravity data coverage exists and one carefully accounts for topographic effects. Although
such procedures may never reach the accuracy level of first-order spirit leveling, they
certainly provide a promising cost-effective alternative for lower order vertical control on

a regional basis.

1.2 The Task of Vertical Datum Unification and the Proposed
Approaches

From the previous discussion, it becomes obvious that the internal inconsistencies
in continental vertical networks, due to over-constraining of tide gauge stations, can be
removed by re-adjusting the networks using only one geopotential number constraint
(minimum constraint solution) (Laskowski, 1983). Such procedure was followed in the
establishment of the United European Leveling Network 1973 (UELN-73), where the
Normal Amsterdam Piel (NAP) was held fixed to an arbitrarily assigned geopotential
number as the "origin" point of the network (Kelm, 1985). The same procedure is
adopted for the definition and re-adjustment of the North American Vertical Datum 1988
(NAVD 88) (Zilkoski, 1986).
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The removal of internal distortions from continental vertical networks does not
pose any theoretical problems, nor does it require any additional observations other than
the geopotential differences obtained from leveling and gravimetry. The implications
however (e.g. in map-making) of changing the height system for an entire country or
continent have to be considered carefully. In addition, even if a tide gauge were to be
selected as the "origin" point of such network, the presence of the QSST would cause
some points along the coast to be below, and some above, the MSL (Colombo, 1985a).
Land "below sea level”, shown on a coastal map, would be undesirable from the practical
point of view; however, as Colombo (ibid) pointed out, such problems may be avoided
using a local vertical reference for the region, based on a local tide gauge. Provided that
at least one station is connected to both the local and the national (or international)
network, both sets of "heights" may be converted to each other unambiguously. Such
procedures are conceptually very similar to the use of local "best-fitting" ellipsoids as
opposed to a global "Mean-Earth" ellipsoid (Heiskanen and Moritz, 1967, section 5-11)
in "horizontal” network applications.

According to the above, the definition and realization of a global vertical network
finally reduces to the task of accurate determination of geopotential differences between
points that cannot be connected by spirit leveling (combined with gravity observations),
i.e. between points separated by ocean. Once these geopotential differences are
determined, e.g. between the "origins" of the various (internally consistent) continental
networks, an arbitrary value for the potential at one "origin" point, is enough to provide a
global uniform system of geopotential numbers.

Although the need for internally consistent continental networks arises from
practical considerations, establishing intercontinental vertical connections is primarily of
scientific, rather than operational interest, and the necessity of such connections has been
debated in the literature. One advantage that a global vertical network possesses, is that it
will enable referencing of regional gravity anomaly databases to a uniform system, thus
freeing global anomaly fields from regional systematic errors induced by height
inconsistencies (Rapp, 1983; Heck, 1990). Colombo (1985b) however, has pointed out
that GPS observations and gravimetry may enable one to switch from gravity anomalies
to gravity disturbances, in future gravity surveys, the latter ones being independent of
orthometric height inconsistencies. Although this is true, it is also unreasonable to
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believe that the wealth of gravity anomaly data acquired in the past will be simply
abandoned under such operational procedures.

The approaches proposed for the unification of vertical datums are based on either
one of the two following principles:
(a) Since the MSS does not coincide with an equipotential, define and realize in some
manner another equipotential surface to be the reference; if both the MSS as well as its
departures from the reference surface are accurately determined and monitored, the
transoceanic connections based on tide gauges can be maintained.
(b) Abandon MSS as a transoceanic connection and seek alternative techniques of
estimating accurately geopotential differences between points separated by ocean.

Colombo (1985b) classified the observational techniques and estimation
procedures proposed up to now for the unification of vertical datums into four main
categories; the first two follow principle (a) above, while the other two (b).

(1) Oceanographic Approach

This technique, outlined by Cartwright (1985) considers the reference surface to
be at a fixed geopotential number above an isobaric (i.e. equipressure) surface, 2000
decibars below the annual MSS at some specified epoch. Cartwright's technique
employes hydrographic measurements along profiles that extend from shallow areas near
a tide gauge, to ocean depths of more than 2 km. These profiles are selected to coincide
with the repeat groundtracks of an altimeter satellite that can provide estimates of the
ellipsoidal height of the sea surface. Steric and geostrophic leveling are used to determine
the shallow point elevation relative to the deep isobaric surface, while pressure
measurements and spirit leveling are used to connect the shallow point to the nearby tide
gauge.

From the theoretical point of view, arguments against this technique have been
raised, related to the accuracy and suitability of the isobaric surface ("level of no motion")
hypothesis (Colombo, 1985b). In addition, the geostrophic leveling used to connect the
deep ocean location to the shallow one, may not be accurate enough to model the complex
ocean dynamics near the continental boundary (Wunsch and Gaposchkin, 1980). From
the practical point of view, several oceanographic restrictions limit the selection of sites
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where the technique could be applied (e.g. sites must have narrow continental shelves,
should not be affected by river discharge, strong currents etc.). In addition, at least a full
year of (nearly) simultaneous observations at all sites is required to establish the
transoceanic links, and the resulting vertical datum would have a rather strong time
dependency and would require periodic re-definition. Although periodic maintenance
would be necessary for a global vertical datum, no matter what technique is used to
define and realize it (since the Earth's gravity field undergoes secular and periodic
changes due to a variety of geodynamic phenomena such as post-glacial rebound, mass
redistribution etc.), alternative techniques may offer better temporal stability.

(2) Altimetry-Gravimetry Approach

This technique, considered variously by Mather et al. (1978) and Wunsch and
Gaposchkin (1980), utilizes altimetric observations in combination with ocean gravimetry
and aims to the simultaneous recovery of the QSST and the geoidal undulation. The
estimation technique proposed by Wunsch and Gaposchkin (ibid) is in essence least-
squares collocation, and the separation of the geoidal from the QSST signal is aided by
the use of prior information in the form of a-priori degree variances for these signals.
One of the limitations of such procedures comes from the inaccurate and insufficiently
sampled oceanic gravity measurements. However, the ideas of Wunsch and Gaposchkin
(ibid) have been pursued further by a number of investigators (Wagner, 1986; Engelis,
1987) and recent analyses (e.g. Denker and Rapp, 1990) have verified the ability of
satellite altimetry to determine the long-wavelength features of the global ocean circulation
and simultaneously provide improved estimates of the long-wavelength part of the
oceanic geoid, as well as, improved orbital parameters. Such solutions though, aim to
resolve global features of the QSST, with wavelengths greater than about 4000 km;
detailed local determinations in the shallow areas near the tide gauge locations are further
complicated by the inaccuracies of the tidal models.

(3) Geodetic Approach

7 The main ideas in this direction have been put forward by Colombo (1980). He
considered the realization of a global vertical network by a set of benchmarks whose
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geocentric coordinates and geopotential differences are accurately determined. In his
analysis, SLR techniques would provide the geocentric coordinates, while surface
gravimetry, spirit leveling and a low-degree geopotential model would provide the
geopotential differences, in a least-squares collocation solution. He has also considered a
modification of the observed gravity anomalies to avoid possible contamination of the
estimated geopotential differences, by systematic errors in the anomalies due to height
inconsistencies. Additional error analysis performed by Hajela (1983) has indicated that
Colombo’s technique could provide a US - Europe connection at that time, to an accuracy
of about 50 to 60 kgalcm. The reference geopotential model used at that time was the
OSU81 (Rapp, 1981a). The disadvantage of Colombo’s technique lies on its dependence
on the reference geopotential model. That is, the transoceanic “connection” of stations is
carried out analytically, through the long-wavelength information provided by the
reference model. Consequently, any errors of the low-degree harmonics propagate
directly to the estimated geopotential differences. This has also been manifested in the
contribution of the errors of the model to the total error budget, in the error analyses
performed.

Hein and Eissfeller (1985) have discussed the application of an integrated geodesy
adjustment approach to the problem, considering stations at (or near) tide gauges and
additional observations to those considered by Colombo (1980), such as altimeter
measurements and deflections of the vertical. Brovar (1988) and Rummel and Teunissen
(1988), on the other hand, have considered the analytical modification to the solution of
the geodetic boundary value problem, so that vertical datum offsets can be introduced as
unknowns and estimated by solving a linear system of equations. The technique of
Rummel and Teunissen (ibid) requires the same type of observables as the one of
Colombo (1980). However, the former, is in the strict sense applicable only if vertical
datum offsets are identified worldwide and introduced as unknowns in the linear system
to be solved, provided also that global coverage of gravity anomalies is available; such
restrictions have been circumvented in Colombo's (ibid) approach.

(4) Relativistic Approach

Based on a different physical principle, this technique, introduced by Bjerhammar
(1985), aims to the direct measurement of geopotential differences, using the effect of
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gravitation on frequency standards, as predicted by the theory of general relativity.
Unfortunately, this effect is too small to be detectable by the frequency standards
available at present, and application of this technique has to be postponed until orders of
magnitude improvements are achieved in the accuracy of frequency standards.

The scientific and technological advances that have been achieved, or are
anticipated for the near future, appear to favor at present the implementation of
oceanographic or geodetic type of approaches for vertical datum connections. Both
techniques (but more critically the oceanographic) require some internationally co-
ordinated observation campaign for their implementation (Rapp, 1987); given the limited
interest (from the operational point of view) for unification of vertical datums, techniques
that promise best results while taking maximum advantage of data that either exist, or will
be collected for other investigations, should be preferred. Also, preference should be
given to those techniques that provide longer temporal stability in the resulting unified
global vertical network, and thus require less often re-definition and maintenance.

1.3 Motivation, Objective and Organization of the Present Study

Two types of geodetic projects currently under planning and/or development create
a favorable situation for the implementation of geodetic techniques for vertical datum
connections.

First, the incorporation of GPS receivers on-board a number of satellites
scheduled for launch in the 1992-1995 time frame. Table 1 (see also (Colombo, 1990))
provides some information related to these missions. With the GPS receiver on-board
the lower orbiter observing simultaneously as many as seven GPS satellites, a Multiple-
High-Single-Low Satellite-to-Satellite Tracking (SST) configuration is established (Jekeli
and Upadhyay, 1990). Such configuration enables one to estimate all three components
of the total inertial acceleration at the altitude of the low orbiter. Provided non-
gravitational accelerations can either be measured (as is proposed for ARISTOTELES),
or effectively be eliminated (as in the case of the drug-free GP-B spacecraft), the result of
such an observational system may be viewed as a dense grid of uniform quality
"observations" of the gravitational acceleration vector at the altitude of the low orbiter.
There are two ways that such "observations” can contribute to the solution of the problem
at hand:
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(a) Analysis of the global set of measurements collected during the lifetime of the low
orbiters, is capable of producing global geopotential models whose quality is orders of
magnitude better than current state-of-the-art models, and whose resolution (half
wavelength) ranges from about 600 km (TOPEX/POSEIDON) to 100 km
(ARISTOTELES). These figures have been assessed initially for GP-B by Smith et al.
(1988) using an analytical approach, and have been verified recently through more
elaborate and complete simulation studies (Pavlis, E. et al., 1990). Given the
importance of an accurate geopotential model in the implementation of geodetic
approaches for vertical datum connections, a major contribution to the achievable
accuracies is to be expected from the above missions.

(b) The dense grid of observations at altitude may help resolve localized signatures of the
gravitational field on the surface of the Earth, provided the satellite is low enough and/or
instrumentation on-board provides additional measurements, more sensitive to the finer
details of the field (e.g. the gravity gradiometer in the case of ARISTOTELES).

Table 1. Future Satellite Missions Expected to Carry GPS Receivers On-Board.

Scheduled Altitude/
Name Launch Date | Inclination Description
TOPEX/ USA and French Altimeters and other
POSEIDON 1992 ~ 1336 km |oceanographic instruments. GPS
66.02° receiver under development.
GRAVITY Stanford General Relativity Gyroscop-
PROBE-B 1995 ~600km |ic Experiment. Drag-Free. 2-year
(GP-B) 90° mission.
ARISTOTELES | 1995 ~200km |European Space Agency's Gravity
96.3° Gradiometer. 6-month mission.
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A second type of geodetic activity, pertinent to the vertical datum connection
problem, is the geodetic fixing of Tide Gauge Bench Marks (TGBMs) (Carter et al.,
1989), a project that has been initiated by the International Association for Physical
Sciences of the Ocean (IAPSO). Highly accurate determination of the geocentric
positions of the TGBMs (as well as accurate monitoring of their motions) is necessary, in
order to separate the crustal motions of the TGBMs from the apparent changes of the
MSL observed at their locations, and thus, provide the means of investigating the
possibility that global MSL shows a rising trend resulting from global warming (IAPSO,
1985). Although monitoring changes in the global sea level does not require
establishment of a global vertical network, the data that are to be collected for the former
purpose, can be of use for the latter as well. In addition, if geopotential differences
between TGBMs can be determined accurately, without any reliance to MSL, they can be
used to provide independent control over oceanographically determined QSST differences
between the TGBMs.

The above developments provided the motivation to reconsider (from the geodetic
point of view) the problem of estimating geopotential differences between points
separated by ocean. As mentioned already, this is equivalent to the problem of
connecting different vertical datums to a common reference, thus establishing a uniform
global vertical datum. Following the ideas of Colombo (1980), a "global vertical datum"
is defined here as a network of benchmarks situated on various continents, between
which a set of estimated geopotential differences is given. The technique used to estimate
these geopotential differences is based on an observational system that attempts to
improve the one considered by Colombo (ibid), and overcome some of its limitations.
The basic "components” of the current observational setup are shown in Figure 1.

Two benchmarks, BMA and BMB, are considered to be situated on the same or on
different continents (separated by ocean). These are VLBI or SLR stations, whose
geocentric coordinates are known to sub-decimeter accuracy, and in addition they are
equipped with calibrated absolute gravimeters, so that the magnitude of absolute gravity
is also known accurately at these sites. Differential GPS observations, and relative
gravity measurements, provide estimates of the gravity disturbance at points inside "caps”
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Figure 1. The Basic Observational Geometry.

centered at the corresponding benchmarks. Consider also, "caps" centered directly over
these benchmarks, at the altitude of a satellite which carries a GPS receiver on-board.
Inside these caps, at satellite locations whose geocentric coordinates are known from the
GPS tracking, some functional of the gravitational potential has been estimated (e.g. the
three components of the gravitational acceleration vector).

From the data requirement point of view, apart of information that either exists
already or will be obtained as part of other geodetic activities, the additional observations
required here are the absolute gravity measurements at the benchmarks and the gravity
disturbances in the caps surrounding them. Careful coordination (in terms of site
selection) with the project of geodetic fixing of TGBMs (Carter et al., 1989) can reduce
the number of additional absolute gravity measurements required, while kinematic (or
rapid static) GPS techniques can provide an efficient way of performing the gravimetric
surveys inside the caps.

Based on the above information, using also a reference geopotential model, one
can estimate the potential difference between the benchmarks BMA and BMB, using
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least-squares collocation (Moritz, 1980). In addition, such estimation technique, enables
one to derive measures of the accuracy of the resulting estimates. The main objective of
this study is to provide accuracy estimates for the resulting geopotential differences,
based on realistic assumptions for the errors associated with the input data, and
considering the observational setup of Figure 1, or variations of it. More precisely, the
error analysis to be presented, will address the following issues:

(1) The attainable accuracies for the geopotential differences, if state-of-the-art
geopotential models, developed in the absence of the anticipated missions, are to be
used in the estimation.

(2) The corresponding accuracies using models of the quality expected to be obtained
from various future missions.

(3) The contribution of observations at altitude to the estimation of the geopotential
differences, and the possible improvements in accuracy through the incorporation
of such observations.

It is worth noticing that the procedure considered here does not involve spirit
leveling at all. In more realistic configurations, involving more than one benchmark per
continent, if geopotential differences between these benchmarks are available from
leveling (combined with gravimetry), they could (and should) be used in a simultaneous
adjustment, to increase the redundancy and strengthen the solution (as in the estimation
scheme described by Colombo (1980)). In that sense the current error analysis
corresponds to a worst-case scenario.






CHAPTER II
MODELING ASPECTS

The accuracy that can be achieved in the estimation of the geopotential differences
using the configuration described in section (1.3), depends on the accuracies of the
primary observables involved in the estimation, and on the way according to which
random and systematic errors in the observed quantities propagate to the estimated
values. The former can be assessed from information related to the performance of the
sensing instruments involved in the data acquisition process (e.g. gravimeters); the latter
requires the development of analytical formulations that relate the primary observables to
the quantities of interest, and constitutes the subject of this chapter. More precisely, the
following paragraphs focus on the modeling of the gravity disturbance cbservations on
the surface of the Earth, and of the components of the gravitational acceleration vector at
altitude as obtained from a Satellite-to-Satellite tracking configuration.

2.1 The Boundary Condition Implied by Gravity Disturbance
Observations

Let (r, 0, A) denote geocentric distance, geocentric co-latitude and longitude
respectively. The following notation definitions are adopted:

V(r,0,7) : true gravitational potential of the Earth.

Ve(r, 0) : gravitational potential of a reference ellipsoid of revolution whose
surface is an equipotential surface of its gravity field.

Vm(r, 8, A) : true value of the gravitational potential of the Earth, that arises from
all the harmonics only up to maximum degree M.

O(r, 6) : true centrifugal potential of the Earth.
14



15
It is well known (Heiskanen and Moritz, 1967, p. 47) that:

= 2
alr, 0) = é—w’-ﬂsm 0 @.1)

where  is the spin rate of the Earth. An estimate of ®(r, ) may be obtained from
estimated values of r, 0 and ®. Assuming for a moment that (r, 0) are perfectly known,
the error in the estimated value of ®(r, 6) due to an error £, in ® will be:

edlr, 8), = r2sin?0e,, (2.2)

Using the nominal values r = 6371 km, o = 7292115 x 10-rad/s, and £, = 0.1 x 10-11

rad/s (Chovitz, 1988), one has for a point on the equator (where e&)w becomes

maximum):
maxed (r, O) = 3 x 103m?s2 = 3 x 10 kgalm 23)

Such error in potential translates to linear ("height") error of about 0.3 mm and therefore
is, in the context of this study, negligible. Hence, in all subsequent analysis, the spin
rate of the actual Earth will be considered perfectly known and equal to the spin rate value
used in the definition of the reference ellipsoid, i.e.

ed(r, 0)=0, (2.4)
and the centrifugal potential estimated from perfectly known (r, 6) but approximately

known @, will be considered identical to the true centrifugal potential of the actual Earth.
The following notation will be used:

W(, 6, L) = V(r, 6, 1) + ®(r, 0) (2.5)
Us(r, 6) = Ve(r, 6) + O(r, 6) (2.6)

U™(r, 0,1) = V™(r, 6, L) + O(r, 0) Q2.7
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so that, W represents the true gravity potential of the Earth, U® the gravity potential of the
reference ellipsoid, and U™ the true value of the part of the gravity potential of the Earth
that contains harmonics of the true gravitational potential only up to maximum degree M.
Vm and UM should not be confused with estimates V™ and U™ of these quantities,
obtained e.g. through satellite perturbation analysis; the former are frue values while the
latter are contaminated by the commission error of the estimated harmonic coefficients.

The disturbing potential T at a point P(r, 8, A), is now defined by Heiskanen and Moritz
(1967, section 2-13):

Tp=Wp - Up (2.8)

with respect to the ellipsoidal field, and by:

Tp = Wp - Up 2.9)
with respect to the truncated field UMm. Due to the previous definitions and the
assumption made concerning the centrifugal potential, one has:

Tp=Vp-V} (2.10)

TP =Vp- V§ @2.11)

In addition, the following quantities are introduced (Heiskanen and Moritz, ibid):

gravity vector : g,= grad(W)p (2.12)
normal gravity vector : ¥p = grad(U¢)p (2.13)
gravity disturbance vector : gg;» =gp- Yp 2.14)

and the geometrical relations associated with these definitions are illustrated in Figure 2.
According to the previous definitions and due to linearity of the gradient operator one has:

dgp = grad(T)p ' 2.15)
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Figure 2. Geometry Associated With the Gravity Disturbance.

Now, proceeding along the same lines as Moritz (1980), if 1 is the arc-length along the
isozenithal (ibid, p. 345), one can derive from equation (2.15):

i
* ot (2.16)

where Sg;, is the component of §’gp in the downward direction of the isozenithal passing

through P. The very small curvature of the normal plumb line (Moritz, 1983, p. 7) -
justifies the approximation that the normal plumb line coincides with the straight
ellipsoidal normal, in which case the isozenithal will also coincide with the straight
ellipsoidal normal (Moritz, 1980, pp. 345-346). Under such an assumption, equation
(2.16) becomes:

’ dT
P
P (2.17)
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’ -
and Sgp will be hereon understood to represent the component of dgp along the
downward direction of the straight ellipsoidal normal through P. If é'h is the unit vector
in the direction of increasing ellipsoidal height, and 'én the unit vector along the normal

plumb line (pointing outwards), then the assumption made before implies:

€, =¢, (2.18)

and equation (2.17) may be written as:

8g, = @p - ¥p) - (- ) | (2.19)
where the dot denotes scalar product. According to (2.18) the last equation becomes:

g = - Ep - &, - T

=-grad(W)p- €, - I¥p  or finally:

|*|—8'+a—w— (2.20)
Yp gp oh b .

On the other hand, if E’H is the unit vector along the direction of increasing orthometric

height, one has:
Igpl = grad(W)p - (- €y | 2.:21)

or, (Pavlis, 1988, equation 2.31) :

—oW . dW oW
[l =|- cos —-E——-n
oh Modp Ncospdljp (2.22)
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where,  is the total deflection of the vertical, &€ and 7 its latitudinal and longitudinal
components respectively (Heiskanen and Moritz, 1967, p. 83), M and N the meridional
and prime vertical radii of curvature respectively and ¢ denotes geodetic latitude.

Adding equations (2.20) and (2.22) by parts, one obtains:

g9l - 17pl = 3g, + &p (2.23)
where:
o~ Ak \\4 oW
£p={(1-0089; -§a -n ]
oh Modp Ncos @dA|p (2.24)
From equations (2.17) and (2.23) one has:
Igp! - 1¥pl = - (?-T—) +€p (2.25)
P o o .

However, it was shown by Pavlis (1988, equation 2.52), that:

(?_i) =(a—3) -e2sin0pcosev(£) +0(e4)
amle \orl ra0 Jp (2.26)

where e is the first eccentricity of the reference ellipsoid. Hence, neglecting terms of the
order e4 and higher, one has from (2.25):

'é’p'-l?’pl=-(9-T—) +(en)p +Ep (2.27)
or Jp

where,

(en)p = liezsinecose(ﬂ)} .
108/ p (2.28)
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Equations (2.25) or (2.27) represent the boundary condition of a Neumann-type
boundary value problem (bvp) of potential theory (Kellogg, 1954), linearized with
respect to a Somigliana-Pizzetti normal gravity field (Heiskanen and Moritz, 1967,
section 2-7). From equations (2.22) and (2.24) follows that:

- a
ol = - LA _ 2.29
gpl (ah )P Ep (2.29)

Equation (2.25), when compared with (2.29), indicates that linearization with respect to
the aforementioned normal field, removes the centrifugal terms from (2.29). In addition,
linearization permits the truncation of the Taylor series expansion of d-/ch, around o0+/dr,
to terms of O(e2) in (2.27). Provided that the effect of the mass of the atmosphere has
been taken into account analytically (see section 2.3), the disturbing potential T may be
considered harmonic outside the topographic surface (S). The problem at hand then, is to
determine the function T, harmonic outside (S), and regular at infinity, subject to the
boundary condition (2.25) or (2.27), both valid over the known boundary (S). This is a
fixed bvp; however, both (2.25) and (2.27) represent oblique derivative boundary
conditions, since neither the ellipsoidal normal, nor the geocentric radius vector, are
normal to the surface (S), where the boundary values are given. Equation (2.25)
contains the effects of the approximation (2.18), while (2.27) contains in addition the
effects of the neglected terms of O(e?) and higher in the Taylor series expansion of d+/dh
around d-/dr. Equation (2.27) may also be written as:

IgP! - 1¥pl - [(en)p +€p)= - (a—T) (2.30)
dJrlp

or, due to equations (2.10) and (2.11) :

Avm - v9

or

5
=-1— (2.31)
P

Igp! - 1Yl - [(en)p +€p) + [
or Jp

For the purpose of future reference, equation (2.25) is also repeated here, written in the
form:

Igpl - I¥pl - €p = - (3—T) , (2.32)

h/p
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Regardless of the form of the boundary condition that one adopts, the primary
observable from surface gravimetry is the magnitude of the gravity acceleration at the
surface point P. The magnitude of the normal gravity at the same point can be computed
to any degree of precision, once the reference ellipsoidal gravity field is defined and the
geocentric coordinates of P are given (Heiskanen and Moritz, 1967, section 6-2). Hence,

the gravity disturbance

Sgp =Igpl - el (2.33)

as obtained from surface gravimetry, contains the observation errors of Igpl and the errors
in 17pl induced by the errors in the geocentric coordinates of P. The latter is a
misregistration error, i.e., the actual observation refers to a different location than the one
defined by the geocentric positioning results.

From the point of view of an analytical formulation for the solution of the current
bvp, it is obvious that &g is related to the unknown disturbing potential, in a rather
complicated manner, due to the presence of the atmospheric effects, the ellipsoidal terms
(ep)p and €p, and even more critically due to the fact that it is defined over the
topography, a very complex surface which cannot be describe analytically (Holota,
1985). Fortunately however, the dominant spherical character of both the shape, as well
as the gravity field of the Earth, and the fact that the atmospheric mass amounts to only
about 10-6 (Moritz and Mueller, 1987, p. 4) of the mass of the Earth (hence the
atmospheric attraction is about 10-6 the attraction of the rest of the Earth's mass), have the
consequence that the solution of the current bvp can be approximated to a high degree of
accuracy by the solution of a second bvp of potential theory for the space exterior to a
sphere. The latter solution can subsequently be refined by appropriate corrections that
account for the differences between the real world and the idealized situation. The
analytical solution of Neumann's bvp for the exterior of a sphere is the subject of the next
section, while the refinements to this solution are considered afterwards.

2.2 Solution of Neumann's Boundary Value Problem for the Exterior
Space of a Sphere

In the general case, the statement of the exterior Neumann's problem is given as
(Kellogg, 1954, p. 246):
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"Determine a function U, harmonic in the infinite region outside a closed surface
S, if its normal derivatives dU/on assume on the surface S prescribed values”.
Harmonicity over an infinite region will be understood to include the demand for
regularity at infinity (ibid, p. 217). Such demand ensures uniqueness for the solution of
the exterior problem, unlike the interior one, where the unknown function can only be
determined up to an additive constant (ibid, p. 246).

To develop an integral formula for the solution of the exterior problem, one must
find a Green's function of the second kind G(P ; Q), such that:

d

1l Ltap. oY
U(P) 41:HzG(P’Q) n(Q)dsq
S 2.34)

where, P is outside S and Q defines the location of the variable area-element dSq on S.
In the current case the surface S will be the surface of a sphere of radius R, centered at
the origin O of the coordinate system used (see Figure 3).

P@6,%)

QR,0,1)

Figure 3. Geometric Relations Used in the Derivation of Hotine's Kernel.
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The unknown function U will be denoted here T, while the boundary values 0T/0r with

opposite sign will be denoted dg, i.e.

5g=- %“I (2.35)

on the sphere (O, R). For the determination of the required Green's function one may
proceed as in Hotine (1969) (see also (Sjoberg, 1990)). From Figure 3 one has:

£2 =12 + R2 - 2Rr cosy (2.36)
and setting:
k=3 (2.37)

yields:

L={1+k2-2kcos 1
V4 ( ‘I’) (2.38)

The right-hand side of the last equation is readily recognized to be the generating function
of the Legendre polynomials (Davis, 1975, p. 365); hence:

oo

i—: Y. k"Py(cos )
n=0 (2.39)

where, Py(t) denotes the nth-degree Legendre polynomial of the first kind with argument
t (Heiskanen and Moritz, 1967, section 1-11), and the infinite series in (2.39) is
absolutely and uniformly convergent for k<1. Considering k as an independent variable
in (2.39) and integrating both sides of (2.39) with respect to k, one obtains:

I dk= S kK
f e gﬂ” g Prlcos¥) (2.40)
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Now, as Hotine (1969, p. 311) has observed:

antl_»o_ 1
n+1 n+1 (2.41)

so that, from (2.39) and (2.40), taking also into account (2.37), one has:

2R-ff-dk =Y 20+l yn+1p (cos y)
¢ Jt ontl (2.42)

The indefinite integral in (2.42) may be evaluated in closed form as:

L dk =1In2 +ln(£—+k- cosw)
t (2.43)

Considering the limiting value of the expression on the right-hand side of equation (2.43)
as r tends to infinity, it may be easily verified that:

r L
f Ldkzh(ﬂ;w_s‘v)
l 1 - cosy

(2.449)
In addition,
rli—)m {%} =0
(2.45)
so that equation (2.42) implies:
Lik- cos
2R ln(—r———————————‘i’— Z 1 kn+1p (cos \V)l
) 1 - cosy o n+ 1 " (2.46)

Since,

|P{)l<1; -1St<1, n=0,1,2,. (2.47)
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one has:

lim 2n+ 1 yn+l = 2n+1 - I n+l} =
Zo — k1P (cos y) E;) o Py(cos y) rE)mm{k } 0,

I—yoeo
(2.48)
as long as k < 1. Hence, equation (2.46) finally becomes:
Hk, y)= 3, 2021 kn*1Py(cos y)
no ¥ (2.49)
where:
Hik, y) = 2K - lr{D(k’ Wjrk-cosy) L g
D 1 - cosy (2.50)
and: D2(k, ) = 1 - 2kcosy + k2 (2.51)

The series in (2.49) has the same convergence properties as the one in (2.39), fork < 1.
The case k = 1 requires special consideration in order to establish conditional
convergence, except of course for y = 0 (Hotine, ibid). The function H(k, y) will be
designated hereon Hotine's function (or kernel); more precisely the form (2.50) will be
referred to as Pizzetti's extension of Hotine's kernel, while the term Hotine's kernel will
be reserved for the special case whenk = 1.

The unknown function T is now identified to represent the disturbing potential
(equations (2.8) and (2.10)). Assuming that T is harmonic outside the sphere (O, R), the
following relation will be adopted for its expression in terms of solid spherical
harmonics:

16 0,1)=GMY, (BF 3. Con¥unlo, )

n=0 - (2.52)

where: GM is the geocentric gravitational constant
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(—Inm are fully-normalized, unitless, disturbing potential coefficients (with
respect to the ellipsoidal gravitational field)

and:

cosmA if m20

Yonl®, A) =P, 0) -
( ) nlm(cos ) sin Iﬂ’ﬂ. if m<0 (2.53)

where Ppm(t) is the fully-normalized associated Legendre function of the first kind with
argument t (Heiskanen and Moritz, 1967, section 1-11). Denoting the nth-degrec surface
spherical harmonic (ibid, section 1-10) of T by Ty(6, A), i.e.,

1 6, A) = QMzo PR MCRY

(2.54)
equation (2.52) becomes:
1. 0,3)= X, (Bf*'1,6,1)
n=0 (255)

and both (2.52) and (2.55) are convergent for r > R (ibid, section 1-16). According to
the last equation one has:

aT _ %Z n+ 1X§—)"+1Tn(6, A)
n=0 (2.56)

and thus, according to (2.35):

selr, 0,1 = lz (o + DRFT,(0, 2)

2.57)
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Note that 8g here is used merely as a symbol for - dT/dr, with no explicit connection to

the quantities that are actually observed, in contrast to the discussions of section 2.1. The
relation between the current g and the observables will be considered later.

Assuming that 3g(r =R, 6, X), on the surface of the sphere (O, R), can be expressed as a
convergent series of surface spherical harmonics, 8gn(6, A), one has:

5¢(R, 6,1)= ¥ 8ed0,4) -
n=0 (2.58)

and, due to (2.57) and (2.58), it follows that:

=n+l .
5g:(6,1)= B£LT,(0, 2) (2.59)

The surface spherical harmonics 8gn(0, A), may be determined by (Heiskanen and

Moritz, equation 1-71) :

Bg,,(G, K)= Zﬂilf ] Sg(R, 0, ?u’)Pn(cos ydo ,

4z
5 (2.60)
where G is the surface of the unit sphere, and :
cosy = cosBcos®” + sinBsin®’cos (}. - l’) (2.61)
do = sin6’do’d\’ . (2.62)

Equation (2.60), due to (2.59), yields :

H-I%LT,I(Q,X)=21}4—;—1-I f 5g(R, 07, A JPa(cos y)do = (due to (2.55))

o
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< 1 ’ ’
tho-&| | | BBt reo vl vk

(2.63)

where in the last equation the orders of integration and summation have been
interchanged. Due to (2.49), and considering (2.37), the last equation finally becomes:

T 6,2 j f HE , v)eelR. 0%, 2kio

(2.64)

The last equation is the desired integral formula, that determines the value of the
harmonic function T, at any point P(r, 6, A) outside the sphere (O, R), from the values of
its normal (radial) derivative, given continuously over the surface of this sphere. In the
limiting case where r—R, it can be shown easily that:

= —csc Y . v
H(1, y)=H(y)=csc 5 ln(l +csc 2) 2.65)
and : Hiy)= Y, 20+1lp (cosy) |, (2.66)
a0 0t 1

while equation (2.64) becomes :

16, x)-—H H(y)og{6”, Mldo

c (2.67)
where the constant radius R was omitted from the notation of the kernel H(y).

From equations (2.55) and (2.59) one also obtains:

¢ 6,2)=RY —L_(RP*5 (g 2
1, 0,1) Za"’fl(f)n g8, 1) 068
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which represents the solution of the bvp in question, in terms of spherical harmonics
(compare with (Heiskanen and Moritz, 1967, equation 1-91)); the surface spherical
harmonics 8gn(0, A) are again obtained from equation (2.60).

Comparing equation (2.64) to (2.34), taking also into account the definition (2.35), it
becomes obvious that the Green's function of the second kind G(P ; Q) for the problem at
hand is :

GP;Q=-RHR,y) . (2.69)
The function H(k, ) possesses a number of properties which are given next :
(1) Hk,y)>0; 0<k<1, O<y<sr (2.70)

This can be proved easily if one recognizes that for the above range of k and v, it holds

true that :
2k _D+k-1
D" 1-t @70

and utilizes a series expression for the quantity In(1 + x) for x > 1/2.

2) VzH(k, y)=0 ; k<1, (2.72)

i.e., H(k, V) is harmonic outside the sphere (O, R), as it can be seen immediately from

the expression (2.49).

LAl v) _ R -R?)

, 2.73
or £ 273

3)

which may be proved either by direct differentiation performed in equation (2.50), or,
more simply, by differentiation of the series expression (2.49) utilizing also the relation
(Heiskanen and Moritz, 1967, p. 35) :

R(r2 - +1
(2n + 1){Bf""Py(cos y) .
g’ (&1 (2.74)
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Note that the right-hand side of (2.73) is exactly the kernel function of Poisson'’s integral
(irbid, equation 1-89). In addition, from (2.73) may be easily verified that:

3H(k, w)| _
r-R or

b4

(2.75)

(the case ¥ = 0 requires use of L'Hospital's rules to prove the last relation). This relation
is actually a boundary condition that is imposed on the Green's function of the second
kind, developed for the solution of the second bvp of potential theory (Roach, 1970,
equation 9.88), specialized here for the case of spherical boundary.

A graph of the function H(y) (equation (2.65)), is given in Figure 4; for
comparison purposes, the figure also illustrates Stokes' function S(y) (Heiskanen and
Moritz, 1967, equation 2-164).

Although gravity disturbances are geometrically and conceptually simpler than
gravity anomalies, traditional geodetic practice has relied heavily on the latter, for the
determination of the external potential of the Earth. The underlying reason, is the
requirement for a known boundary for the definition of the disturbances, unlike the
anomalies (Hotine, 1969, p. 314). Using observations of the gravity anomaly vector and
the gravity potential, all over the unknown surface of the Earth, Molodensky's bvp is
formulated as a non-linear, free bvp, whose solution determines not only the external
potential, but also the physical surface of the Earth. Linearization in that case requires the
introduction of both a normal gravity field and an auxiliary known surface (the telluroid),
in order to reduce the original problem to a linear, fixed bvp, and thus enable a tractable
solution. The definition of the telluroid requires additional conditions to be imposed on
either the potential anomaly AW (and the directions of actual and normal plumb lines)
(Marussi mapping) or the gravity anomaly vector Eg (gravimetric mapping) (ibid, pp.
338-339). In the current case, the physical surface of the Earth is considered known,
hence the introduction of the telluroid (and subsequently of the above conditions on AW
or K)g), is unnecessary. The normal gravity field, is introduced in order to remove
centrifugal terms from equation (2.29) and enable an early truncation of series related to
ellipsoidal terms.
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Finally, from the previous derivations, it is obvious that the use of gravity
disturbances circumvents the problems related to the inadmissible harmonics of degrees
n = (0, 1), which have to be suppressed from the disturbing potential for the derivation of
Stokes' integral (Hotine, 1969, pp. 317-318). While global gravity anomaly data, input
to Stokes' integral should not contain harmonics of n = (0, 1), no such restrictions apply
to the disturbances to be input to Hotine's integral formula. It should be noted here, that
the absence of first-degree harmonic from T, which implies coincidence of the center of
mass of the Earth with that of the reference ellipsoid, was implicitly assumed when the
centrifugal terms of the true geopotential and the normal one were equated (see equations
(2.8) and (2.10)). The effect however, on the centrifugal potential, of non-geocentricity
of the coordinate system used, is only about 1 x 10-3 kgal m (for present accuracies on
the determination of the geocenter), hence the geocentricity condition there, only mildly
needs to be employed.

2.3 Consideration of Systematic Effects
The integral formula (2.64) was developed based on the assumptions:

(@  The disturbing potential T is harmonic outside the sphere (O, R) (see equation
(2.52)).

(b)  The boundary values dg represent radial derivatives of T (with opposite sign; see
equation (2.35)).

(¢) Boundary values are given on the surface of the sphere (O, R).

In the real world, the presence of the atmosphere violates assumption (a), while the
available boundary data do not comply with either (b) or (c), as was discussed in section
2.1. The simplicity of the previous formulation though, and the magnitude and spectral
content of the discrepancies between the real world case and the one assumed in section
2.2, suggest that it is preferable to retain the formulation developed, and modify the
observable, in order to ensure the best possible compatibility with the analytical models,
at the cost of degrading somewhat the integrity of the original measurements.

The primary information available from surface gravimetry combined with GPS
positioning, is the magnitude of the gravity acceleration at the surface point P, and the
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geocentric Cartesian coordinates of P. Normal gravity at the same point may be
calculated by transforming the Cartesian coordinates to ellipsoidal ones (Heiskanen and
Moritz, 1967, section 1-19), and then making use of closed formulas for the magnitude
of normal gravity, as described in (ibid, section 6-2). Alternatively, Cartesian
coordinates may be transformed to geodetic ones, and normal gravity may be calculated
from a truncated series (ibid, section 2-10). Pavlis (1988, section 3.1.1) has shown that
such series should include terms at least up to O(h2/a2), to avoid introduction of

undesirable systematic errors. That is:

I¥pl = Yoq 1 - 2(1 +f+m- 2fsin2(pq',)%P +3(%P)2] , (2.76)

where (g, is the geodetic latitude and hp the ellipsoidal height of point P (see also Figure

2), and the rest of the notation is defined in (ibid, section 2.3.1).
According to the above the gravity disturbance dgp, defined in equation (2.33), is

evaluated. The systematic corrections to this quantity are described next.

1.  Atmospheric Correction : 3gA

Provided the mass of the reference ellipsoid used to define the normal potential
includes the total mass of the atmosphere (as in the cases of GRS '67 or GRS '80),
Moritz (1980, p. 424) has shown that the atmospheric correction on measured gravity is
given by:

Sga=G M_r(zrrl 2.77)

P

where M(rp) is the mass of the atmosphere above a sphere passing through the
observation point P (see also (Pavlis, 1988, Figure 6)). To remove the atmospheric
effect from 8gp, 8ga needs to be added to the gravity disturbance as given by (2.33).
Obviously, since 8ga has to do with measured gravity, which enters in the same way in
the definition of both disturbances and anomalies, the correction is identical for both
quantities (Moritz, 1974).
For computer implementation it is convenient to evaluate dga from:

Sga = 0.8658 - 9.727 x 10-5Hp + 3.482 x 10°H}  (mgal) 2.78)
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where Hp is the orthometric height (or equally well the ellipsoidal one) of the gravity
station in meters. This polynomial was developed by Wichiencharoen (1982), by fitting
a quadratic function to the tabulated values of (IAG, 1971, p. 72). The indirect effect
(shifting of equipotential surfaces due to the condensation of the atmospheric mass on the
reference ellipsoid), is only about - 0.7 cm at sea level, where the correction becomes
maximum (Moritz, 1980, p. 425), and thus it can be safely neglected.

2. Ellipsoidal Corrections : €h, &

From equation (2.29) it can be seen that:

r=(au - o o

i.e., ep arises due to the difference in the directional derivatives of W along the straight
ellipsoidal normal (which almost coincides with the normal plumb line) and the actual
plumb line. On the other hand, from (2.26) it is seen that €}, represents the difference (up
to O(e?)) between the directional derivatives of T along the radial line and the straight
ellipsoidal normal. Pavlis (1988, sections 2.3.3, 2.3.6) has shown that the corrections
€p and ep are almost identical both in terms of magnitude and frequency content. The
corrections are of the order of 10 pgals and produce long-wavelength signatures on the
disturbing potential that may reach 20 kgalcm (ibid, Figure 42). The combined
correction (€ + €p) can be computed efficiently in terms of either point values or area-
mean values, from an existing geopotential coefficient set such as the OSU89B (Rapp
and Pavlis, 1990), using the formulation developed by Pavlis (1988, sections 2.3.3,
2.3.4, 2.3.6).

With the above correction terms defined, making use of equations (2.30) and
(2.52), one can write:

Ler 0.0)-SH S (o4 1fEF 3, CunForo. )

n=o0

(2.80)

where the reduced observable La(rp, 0, A) is given by:

Ldrp, 6, %) =8¢l - 7ol + (5ga - £ - £5) . 2.81)
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Equation (2.80) represents a mathematical model, linear with respect to the
coefficients Cpy . A corresponding form of (2.80), written in terms of area-mean values
of Ly(rp, 6, A), may be used to set up a linear system of observation equations, in order
to estimate a truncated set of coefficients Cpy, from a (preferably global) set of
"observed” values of L(rp, 0, A). This may be done in essentially the same manner as it

was done, using gravity anomalies, in (Pavlis, 1988).

However, for the current purpose, the reduced observable of (2.81) is clearly
inadequate, since it refers to the surface point P, while the intention is to make use of
(2.64), which requires values referring to the sphere (O, R). The continuation of the
values referring to the physical surface of the Earth, to a surface that is analytically
manageable, poses the most difficult problem of all other reductions, both from a
theoretical as well as a numerical standpoint. The treatment described next consists of
two steps; first the surface values are analytically continued to the surface of an ellipsoid
and second, equation (2.67) is modified to account for the differences between the
ellipsoidal and the spherical surfaces. The problem of analytical continuation is also
encountered in the implementation of Stokes' integral, and due to its importance has
received extensive studying by a number of investigators (e.g. Moritz (1966; 1974;
1980); Wang (1988)). Their established notation is adopted in the following discussion.

3. Analytical Continuation : g

For notational convenience the quantity La(rp, 6, A) of (2.81) will be simply
denoted dg here (not to be confused with g as used in other sections). The purpose of
analytical continuation, is to determine a corresponding quantity 8g* on the ellipsoid,
such that, 8g is related to 8g* through Poisson's upward continuation integral (Heiskanen
and Moritz, 1967, p. 35). The quantity dg* possesses no physical meaning, as the
surface value dg does, its only purpose being to enable use of convenient analytical
formulas. Relating the two quantities through the upward continuation integral, ensures
that the set of 8g* values on the ellipsoid, reproduces the set of 8g values on the surface,
and consequently the external potential determined from &g* is identical to the one that
would have been determined from 8g. Strictly speaking, the use of Poisson's integral is
valid only if the reference surface of dg* is always below the physical surface of the
Earth, a condition which is not satisfied (in general) by the surface of the mean-Earth
ellipsoid. This problem led Bjerhammar (1962) to introduce the concept of a spherical
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reference surface for 8g*, completely embedded in the Earth. The validity of Poisson's

integral is also ensured if one introduces an embedded ellipsoid, confocal with the mean-
Earth one, as a reference surface for 8g*. This way analytical continuation has to be
performed over shorter distances, which is advantageous from the accuracy and
convergence standpoints, while the embedded ellipsoid concept does not add significant
complexity to the formulation; all that it requires is to reckon ellipsoidal heights from the
embedded, instead of the mean-Earth ellipsoid in the following formulas.

Let now Rp, denote the radius of an embedded sphere. Application of Poisson's
integral to the harmonic function rdg yields:

o =R B8 [ [ 0 o

L
(2.82)

where the notation could be read from Figure 3 (substituting Ry, for R used there). Since
dg* is the unknown quantity, the integral equation (2.82) needs to be inverted.
However, there exists no integral formula that inverts (2.82) (Heiskanen and Moritz,
1967, section 8-10), hence the solution of (2.82) can only be obtained numerically, with
successive approximations. To this end, it can be shown easily (ibid, p. 318) that (2.82)
may be written in the form:

2. o 1-2) | | 32 Ber
Sgp-t0gp = s > do
o (2.83)
where : t Ry
Ip
(2.84)
D=4

The location of the "*' quantities on the embedded sphere is determined by projecting the
surface points to this sphere along the radial line, i.e. the surface point and its projection
have the same geocentric latitude. Approximating

- p=Rp+hp , o (2.85)
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expanding t2 and D3 in powers of hp/Ry, and retaining only terms linear in hp/Ry, one
can easily show that (2.83) takes the form:

r2[ [ 8-

- -hel - 2 8g° + b
dgp=~dgp-h R ogp + I e do
c (2.86)
where :
- -
£, = 2Rpsin > - 287

Equation (2.86) lends itself to an iterative scheme for the computation of Sgp which
is initialized by setting 8gp(® equal to Sgp, as described for the case of gravity anomalies
by Heiskanen and Moritz (1967, p. 318). Moritz (1966, p. 60) has shown that under the
assumptions made above to derive (2.86), and to the first order of hp/Rp, this equation
coincides with the 'gradient solution' to the analytical downward continuation problem,

i.e. the terms inside the brackets in (2.86) represent (BSg"/ ar}. The numerical
implementation of (2.86) on the other hand is all but trivial, since the vertical gradient
required has a very localized behavior and thus its accurate estimation requires very dense
observation coverage around the computation point P. Usually, such coverage is not
available. Employing assumptions regarding the correlation of the observable with
elevation, and making use of available detailed elevation information, an approximate
solution to (2.86) may then be evaluated, as was done by Wang (1988) for the case of
gravity anomalies. The problem of analytical downward continuation is a topic on its
own and further discussion will not be given here. Equation (2.86) will be written

schematically:
Sgp = 8gp + g1 (2.88)
where :
2 | | 8g'- 8gp
- 2 s * 55; g P
g1=-h R ogp + o E do

c (2.89)
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As far as the use of an embedded ellipsoid is concerned, Ry, in (2.89) may be
substituted by the Gaussian mean radius (Rapp, 1984, p. 43) at the computation point P,
for that ellipsoid, since global integration in (2.89) is usually truncated only over a small

cap centered at P.
4. lipsoidal herical In ion : &

The values 8g* obtained from the previous step refer to the surface of the
embedded ellipsoid and thus are still inadequate to be used as input to Hotine's integral
(2.67), which requires values on a spherical boundary surface. This problem, for the
corresponding case of Stokes' integral, is usually treated with ellipsoidal correction terms
as those derived by Moritz (1980, p. 314). However, as Hotine (1969) has pointed out,
the problem may be treated in a conceptually simpler manner; his formulation is
presented next.

First, it is observed that the result of downward continuation, 8g*, represents
radial derivative of the analytical continuation of the disturbing potential (see also
equation (2.81)). Ellipsoidal normal derivatives will be needed next, which formally may
be obtained by adding back (ep)p to 8g;, or, without any loss of accuracy by omitting
altogether (gp)p from (2.81). Hence, Sg;'; from (2.88) is hereon understood to represent:

* aT\*

o5 - - (2L

ch (2.90)
With respect to the ellipsoidal coordinate system (oc = cot' 1U/E, 3, X) (see also (Heiskanen

and Moritz, 1967, sections 1-19, 1-20)), the ellipsoidal harmonic expansion of the
disturbing potential will be written as:

G.M_ Qumficotar)
Ta.3.2)- r;, mzn Qum{(icotars) Cin¥om(3, 1) (2.91)

where:

(2.92)
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and ej, is the second eccentricity of the embedded ellipsoid, while Qnm(z) are associated
Legendre functions of the second kind with argument z (ibid, p. 43). Yyn(3, A) are as in
(2.53), but now evaluated in terms of reduced co-latitude 8. Finally C¢,, are real,
ellipsoidal harmonic coefficients of the disturbing potential, referring to scaling
parameters GM and Rp. Making use of the relation (Hotine, 1969, p. 190):

0 __ tang 9
oh

N oo (2.93)

where N is the radius of curvature of the prime vertical (Rapp, 1984, p. 32), and the
recurrence relation for the derivative of Qum(z), one can derive easily:

-5 8

(n + 1)Qumficotar) + itanc(n - m + 1)Qn 1 jmy (icotar)

m{ICOt0Lp)
(2.94)
where the surface ellipsoidal harmonic Ty,(8, A) is:
Tl 8, A) = GM CornT a5, ) 295

Equation (2.94) holds true for any arbitrary point on, or outside the embedded ellipsoid.
On the surface of this ellipsoid, one has N = Ny and o = aip, hence due also to (2.90),

(2.94) becomes:

n

Nodg = i Z (n+1)I‘nm(8, l)
+ 2 >

m=-n

[itanab(n -m + 1)Qu+1 m (icotow)

Qumficotow) ToaS, l)

(2.96)

Using the series expression for Qum(z), it can be shown that the bracketed term in the
second summation of (2.96) is equal to:

e;z(n-mztll};+m+ 1)[1+O{e'b2)]

(2.97)
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The last relation is a corrected version of the misprinted relation (29.66) of Hotine (1969,
p. 321). Hence, omitting terms of the fourth and higher order of the second eccentricity,
equation (2.96) may be written as: '

Mot 8. = 3 3. (04 1T, )

m=-n
©0 n
‘2 (n-m+1)Yn+m+1) yons
+e2y, 3 Bl Tanf®, %) - (2.98)

Multiplying both sides of the last equation by H(y) as given in (2.65) but with ¥ now
evaluated by:

cosy = cosdcosd’ + sin8sin8’cos{k - l’) , (2.99)

and integrating over the unit sphere (full solid angle), due to (2.66) one obtains:

)= | mvloae o ke

_5_2 n‘g i (n-m+1)n+m+1) H(\Il)Tnm(S', X’)do'

4“J o= 2n+3
[¢)
(2.100)
Denoting:
Lad n
5’,)"= > (n-m+1Xn+m+1)T 8’,l’
a8 1= 3 TS (8, %) (2.101)

and collecting all the previous correction terms together, one finally obtains:

106, 1) = 2 | | Hw | No(og + 8ga - e+ £1) -2 (521 )do

(2.102)
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Equation (2.102) is the desired integral formula which relates the gravity
disturbance 8g (as defined in equation (2.33)), to the analytical continuation of the
disturbing potential on the surface of the embedded ellipsoid, accounting for the ellipticity
of the boundary surface to the second order of the second eccentricity. It can be seen
now that the use of spherical formulas (such as (2.67)), but evaluated in terms of reduced
instead of geocentric colatitudes, introduces two errors; one due to the difference
between Np, and R, and another due to the omission of €. Both errors are of the second
order of the (second) eccentricity (Hotine, 1969, p. 321). Also, from (2.101) and (2.95)
it is obvious that the computation of € requires some a-priori knowledge of the
ellipsoidal spectrum of the geopotential. To avoid the use of the ellipsoidal harmonics,
and subsequently the need for transformation of geodetic latitudes (according to which
measurements are usually registered), to reduced ones, Moritz (1980) used serics
expansions and formulated the ellipsoidal corrections, for various gravimetric quantities,
in terms of geodetic latitudes and spherical harmonics (ibid, pp. 314-328). Such
procedure, as Moritz himself admitted, results in more complicated expressions, than
those for ellipsoidal harmonics (ibid, p. 316). At present, neither one of Moritz's
miotives appears to be a prohibitive factor for the formulation adopted here. The
derivations of Jekeli (1988) and the computer algorithms of Gleason (1988), provide
very efficient means of converting ellipsoidal to spherical spectra and vice-versa.
Furthermore, in view of the computational facilities available nowadays, conversion of
geodetic to reduced latitudes, even for large amounts of observation locations, can hardly
be considered a prohibitive computational task.

In practical applications the integration in (2.102) is usually extended only over a
small cap, centered at the computation point, while one accounts for the effect of the

remote zone through the use of a global geopotential model. Such procedure requires
modifications in equation (2.102), which affect the evaluation of € as well, as it will be
discussed in section 3.1. However, it is instructive here to evaluate the effect of g on T,

for the case of global integration.

Denote:

ef(8.4)=2L f f H(y)&(%, 1')do

(o]

(2.103)
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Substituting in equation (2.103) (3", A") from (2.101) and H(y) from (2.66), and

making use of the decomposition formula of the Legendre polynomials (Heiskanen and
Moritz, section 1-15), one obtains:

sy 2% W (@-m+l) (n+m+1)
qOM =5 gmz @ned) @y O (2.104)

Given now a set of spherical harmonic coefficients of the disturbing potential, Cypm,
referring to scaling parameter R = RM, one sets:

7s _GM [RYPE
fum Ry \Rp/ ™™ ° (2.105)

Using the transformation formula (1.15) of Gleason (1988, p.116), one can evaluate
from f&m, the ellipsoidal spectrum fam, while the unitless ellipsoidal coeffecients Ci, are
finally given by:

Ce = RpFe
Com GMf""‘ ' (2.106)

The term €]'(3,\) may now be evaluated from equations (2.95) and (2.104), using
efficient harmonic synthesis techniques such as those developed by Colombo (1981a).

Such evaluation was performed here using the OSU89B shperical harmonic
coefficient set (Rapp and Pavlis, 1990), complete to degree and order 180; €[(8,A) was
evaluated in terms of 1° x 1° area-mean values, while for simplicity Ry, was set equal to
RM = 6378137 m, the scaling parameter to which the OSU89B model coefficients refer
@ivid, p. 21,896). The ellipsoidal gravity field to which Cyn refer was defined through
the four constants given in (ibid, p. 21,896). The values of £(3,\) computed, range
between -19 kgalcm and +17 kgal cm, with a root mean square (rms) value of 6.4
kgal cm. Their geographical variation is illustrated in Figure 5.
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In a similar fashion one can derive the corresponding correction term for the case

of integration of gravity anomalies (Stokes' integral); such derivation yields (see also
(Hotine, 1969, p. 322)):

L, % (n-m+]) (n+m+1)
(Dael8. )")_eb2,§) m§=:-n (2n+3) (n-1) Tun(O4)

(2.107)

where the prime indicates absence of the first-degree term from the infinite sum.
Numerical values computed for the correction term of equation (2.107) (in the same
manner as for the term of equation (2.104)) range between - 36 kgal cm and + 43 kgal cm,
with an rms value of 14.9 kgal cm. Their geographical variation is illustrated in Figure 6.
These values are in good agreement with the corresponding ones computed by Rapp
(1981b), using the procedures of Moritz (1980). Both correction terms (2.104) and
(2.107) are of long-wavelength nature, with more than 99% of their power concentrated
below harmonic degree 36, so that one can account for their effect accurately, using an
existing global geopotential model.

Finally, to evaluate the disturbing potential at the surface point P, one needs to
upward continue the value computed from (2.102) (which refers to the footpoint P* on
the embedded ellipsoid), to the topographic surface level. A Taylor series expansion in
terms of the elevation yields:

T®) = T(P*) +(§:) h.>+l-(a T) 2+ ..

!
2! \an? (2.108)

hence, due to (2.90) and (2.89) one finally has:

T(®) ~ T - (8¢5 - 1 &1)he 2.109)
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2.4 Gravitational Acceleration Information from a Satellite-to-Satellite

Tracking Configuration

The other source of gravitational information considered here for the estimation of
the geopotential differences, comes from the Multiple-High-Single-Low Satellite-to-
Satellite Tracking (SST) configuration which is established when a low orbiter carrying a
GPS receiver is simultaneously tracking more than one satellite of the high-altitude GPS
constellation.

The idea of using SST data for geopotential modeling was originally proposed by
Wolff (1969). The fact that an SST low-low mission alone, with the satellites in polar
orbit, would be capable of providing a truly global, uniformly accurate and high
resolution geopotential model, caused widespread attention to be given to the proposal.
A number of investigations have been performed, aiming to assess the capabilities of
various SST system scenarios. Some of these studies aimed to assess the quality of
mean gravity anomalies and/or geoidal undulations that can be predicted on the surface of
the Earth from the SST data at altitude (local solutions) (e.g. Hajela (1974; 1978; 1981),
Rummel et al. (1976), Rummel (1980), Rapp and Hajela (1979) and Douglas et al.
(1980)). Other studies (e.g. Colombo (1981b), Kaula (1983)) focused on the
development of efficient analytical techniques, that can be used to process the large global
set of observations which an SST mission will acquire during its lifetime, for the
determination of harmonic coefficients of the geopotential. However, apart from early
experiments of SST between ATS-6/Apollo-Soyuz and ATS-6/GEOS-3 (Kahn et al,,
1982), no dedicated SST system has yet been put into orbit. This is partly due to the
costly requirement for drag-free satellites at the low altitudes (e.g. 160 km), considered
for SST missions of the type of the Geopotential Research Mission (GRM) (Keating et
al., 1986).

In the absence of a dedicated SST mission, the possibility of using the GPS
constellation as the high-altitude component, which continuously tracks a low-altitude
satellite equipped with a GPS receiver, offers a viable alternative. Investigations in this
direction have been already initiated through the U.S. Air Force "Shuttle-GPS Tracking
for Anomalous Gravitation Estimation" (STAGE) mission (Jekeli and Upadhyay, 1990),
where the Shuttle spacecraft is used as the low-orbiter, and an Inertial Measurement Unit
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(IMU) is used in addition to the GPS receiver on the Shuttle, to measure and isolate non-
gravitational accelerations.

The basic mathematical modeling of the observations acquired by an SST
configuration remains unaltered regardless of the mission in question; in contrast, the
signals represented in the observable, strongly depend on the specifications of each
mission (e.g. drag-free orbit, altitude etc.). The modeling of the observable is reviewed
next, while the contribution of various signals contained in it is discussed afterwards.

Consider the motion of two satellites, Sj (high) and S (low), as shown in Figure
7. Three mutually perpendicular unit vectors E; (j = 1, 2, 3) span an inertial frame of
reference (in this section, vectors will be denoted with underbars, for notational

convenience).

Figure 7. High-Low Satellite-to-Satellite Tracking Configuration.
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The following relations are introduced:

1
|20l = (o Lio) 2= (2.110)
€io = _1__[io
io (2.111)
€iolic=0 - 2.112)

Denoting with d/dt time differentiation in the inertial frame, one has:

r , o= .d_ .

tio= g (Tio) 2.113)
for the inertial relative velocity between Sq and S, and :

. T

Vio = Pio = Ljo&io > 2.114)
for the projection of the inertial relative velocity along the direction of the "line-of-sight”
(LOS) between the two spacecrafts. Designated "LOS velocity”, vj, is a quantity that can

be observed from the Doppler effect on the signal received by the low orbiter.
Differentiation of (2.114), with respect to time yields:

Vio = F'lo €io* Tio €i0 - (2.115)
The quantity:
T
3o = Iio fio (2.116)

is the projection of the inertial relative acceleration along the LOS direction. On the other
hand,v;, is the rate of change of the LOS velocity. The second term on the right-hand
side of equation (2.115) (centrifugal acceleration) arises due to the fact that ¢;, represents

a direction which is rotating with respect to inertial space.
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Assume now that a set of initial state-vectors for both satellites and force model

parameters for the forces acting on them are approximately known. Based on such
information one can compute an approximate value for v;, as:

Ve ={15) e, +{%)e% - @2.117)

However, since neither the initial state-vectors, nor the force model parameters are
known perfectly, one has:

8\"io = v.|0 - \"fo , O (2.1 18)

&Vio = 8(iToio) + Hilok o (2.119)

where:

df}'oﬁio) = f}.oﬁio - (i_:ico)Tgcio

T . T . .c YT 2.12
8(l:rioﬁio) = I’{oﬁio - (Iico)Tﬁ‘io ( 0
One may now split the total inertial relative acceleration f;, into two parts:
Fio =TI +Ilo - 2.121)

where 2 is induced by gravitation, and g is due to all other forces but gravitation,
acting on the spacecrafts Sj and So. Accordingly, equation (2.119) takes the form:

Vi = 8[(f(i}o)T§io] + 8[(]':'?3)1‘;30] +90 [t’iro-éio] . (2.122)

The first term on the right-hand side of (2.122) will be the focus of the following
discussion. As mentioned before, this term arises due to the errors of the approximately
known gravitational model and satellite positions. Assuming that these errors are small

enough to justify linearization, one has:

a(f’li.o.@io)
oI,

or;

=T o
6(f'{o.cio) = (Sfio)T-e?o + dro + _3_(15;#0)
I

(2.123)
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where the superscript "G" has been omitted for notational simplicity, and in the following
it will be understood that f,, refers to the component of the relative inertial acceleration
induced by gravitation alone. In addition "c" indicates that the partial derivatives are
evaluated at the approximately known positions.

On the other hand, by differentiating numerically the observed Doppler shifts, one

obtains an "observed" value for V;,, v{o*, where:

VIS = Vio + Nio (2.124)
and n;, represents observational noise in the primary observable, unmodeled (residual)
atmospheric effects, antenna multipath, as well as errors introduced by the numerical
differentiation. Introducing the notation:

Avyo = V%bs - vio (a)
8 = (1 1) eio- (¥ o FT'es,  (b) (2.125)
OR;o = 5(ﬂo§io) (¢}

one has from (2.122), (2.123) and (2.124):

_Q(_E&fﬂ_o)

o dr; + 8alT + 8R;, + €
[+

Sr. + a('l:}.o.ﬁio)

C ! c

Avio = (5 rlo) -Qno

(2.126)

where €;, contains now apart of the noise nj,, the effects of second and higher order
terms omitted in equation (2.123). For the first partial derivative in (2.126), one has:

dﬂ.o_eio) aflo) :T aglo)
or, = Sio o, 1705, - (2.127)

It can be shown easily (see also (Rummel, 1980)) that:

a(ﬁlo) I
o Pio 513 - 2ioclo) (2.128)
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where I3 is the three-dimensional unit matrix. Rummel (ibid) also shows that:

A io) _ d gradV(r,)] _
drI, - oI, —M(IJ

’ (2.129)

where V is the (true) gravitational potential of the Earth, and M the three-dimensional

gravitational tensor, i.e.,

oV PV 9V |

0x2  oxdy oOxoz

2V 9V 9%y

M(r)=

(rd ayox oy  ayaz (2.130)

vV 9V 0%V
0z0x 0dzdy  0z2

~TIo

With corresponding derivations for the partial derivative with respect to rj, equation

(2.126) after regrouping terms becomes:

AVip = (S'I'io)Tsico +{(es,'M(rs) + —%—[[To - aio(_cico)T]}SIo

10

e M(rs) + L[, - aio(;a,f]}a_n

10

From equation (2.131) it can be seen that the (pseudo) observable Av,, is affected
by (and thus contains information concerning) the following:

(a) The residual (with respect to the reference geopotential model used) relative
gravitational acceleration along the LOS between the two spacecrafts (first term).

(b) The difference between the actual and the reference orbits of the two spacecrafts

(second and third terms).
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(¢) The residual (with respect to the non-gravitational force models used) relative non-
gravitational acceleration along the LOS, 3ajo.

(d)  The residual relative centrifugal acceleration along the LOS, OR;o.

(¢) The random noise on the primary observable, residual atmospheric effects, non-
linear term effects etc., all these effects collectively represented in the term €&,

For the current application, of interest is only (part of) the first term in equation
(2.131), while the rest of the terms represent undesired systematic and random "errors".
In contrast, if for example the intention was to estimate improved orbits for the two
spacecrafts, based on the (pseudo) observations Av;,, then the second and third terms in

(2.131) would have been of critical importance. Since:
8fio = 81, - OFi (2.132)
and:

aﬁio = —lc_[I3 - (Qfo) fo).r] (8.1.'0 - 8![) ’
Pio (2.133)

one can re-write equation (2.131) as:
AVio = (880 )¢, - (8:)'e5
+ (g, N [Mrgro - Mr{lr | + ilodeio
+8aC + 8Rp + Eip  » (2.134)

where the orbit error contributions were separated in the parts referring to the absolute
and relative position errors of the spacecrafts respectively. The magnitude of each term
on the right-hand side of (2.134) depends on the particular SST configuration in question
(e.g. satellite altitudes, instrumentation etc.), the maximum degree (as well as the
accuracy) of the reference geopotential model used to evaluate Av;,, and the accuracy of
the satellites' ephemerides. The following considerations pertain to the case where So
corresponds to GP-B (see Table 1), while Sj corresponds to one of the satellites of the
GPS constellation, so that:

tp =|Io| = 6971 km
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Ii= l_l_‘;l = 26560 km

To estimate the magnitude of each term in (2.134) one needs to assume some knowledge
of the terrestrial gravitational field, at least in a global average sense, as described by a
global covariance model (Moritz, 1980, p. 181). The model used here will be defined by
the following anomaly degree variances (see also section 3.4):

QM. 2 ) _&%. n+2 n —
" ) (n 1)2<R2) n;ﬂ (eComf? 2 <n £ Nmax
b1}
co{mgal?) = (GM—)z(n - 1)2!—33)n+2 Y (Com)f Nmax < n < 360
a2 R?/ m=h
343.3408(n- 1) (1 99880961)"" 360 < 1 < oo

| Tn-2)n+29)
(2.135)

where:

GM = 3986004.36 x 108 m3/s?
a=6378137. m
R = 6371000. m

and the Cppy, ECpp, are the fully-normalized unitless harmonic coefficients and their errors
as given by the OSU89B geopotential model (Rapp and Pavlis, 1990) (even zonal
harmonic coefficients are remainders after removing the ellipsoidal reference field). The
cn values defined above refer to the surface of the sphere of radius R, while Nmax
represents the maximum degree of the geopotential model used to evaluate Av;,.

Considering now the first term on the right-hand side of equation (2.134) one has:

I(St‘o)Tgfol <[8to| =|grad[T"(rs)]| = [5.™(ro) (2.136)

where T™ is the disturbing potential with respect to the reference model used (i.e., T™
represents the commission error of the model up to degree n = Nmax, and the omission
error from n = Nmax + 1 to infinity), and g™ is the gravity disturbance implied by the
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aforementioned model (i.e. g™ = - a?n/ or ). The difference in direction between the

actual gravitational acceleration and the one implied by the model has been disregarded in
(2.136). In a spherical approximation, which is sufficient for the magnitude estimates
sought here, one has (see also (Jekeli, 1979)):

S e N

(2.137)

and similarily, for the high-altitude satellite:

rms(i) = {var] (57 es.) ) = {nz:; (nelf c.,{lj—;rz }"z . (2.138)

The cross-rms of the residual accelerations of the high and low satellite, assuming radial
arrangement of the spacecrafts, as the y = 0 notation indicates, is given by (Jekeli, ibid):

rms(i, 0) = (COV[ (8';' i)TSfo’ (8';'0 )T-Qico] \v=o}ll2

- {,; (ely o d +2}’/z

This cross-rms is maximized for radial arrangement of the satellites, enabling a worst
case study of the effect of its omission. In addition, the rms acceleration difference
between the low and high satellite (assuming radial arrangement), is given by:

(2.139)

rms(o-i)=(var[(8':'io)rsfn])vz=[rmsz(o)- 2rms2(, o) +mms2( . (2.140)

These quantities have been evaluated using the degree variances defined in (2.135), and
approximating infinity by n = 36000 in (2.137) through (2.139). The results for various
degrees of truncation (the variable Nmax appearing in equation (2.135)), are given in
Table 2.
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Table 2. Root Mean Square (rms) Residual Acceleration Magnitude With Respect to
OSU89B Model Complete to Degree Nmax (All rms values are in mgals).

Nmax - rms(i) rms(0) rms(i, 0) rms(o - i)
2 0.94106 x 10-2 10.748 0.27752 10.741
4 0.32439 x 10-3 6.391 0.37761 x 10-1 6.391
6 0.16776 x 104 4228 0.68755 x 10-2 4.228
8 0.55717 x 10-3 2.784 0.11287 x 102 2.784
10 0.55323 x 10°3 1.865 0.25036 x 10-3 1.865
20 0.55323 x 10°3 0.583 0.18081 x 10-3 0.583

From Table 2 it can be seen that a state-of-the-art reference gravitational model
(developed in the absence of any of the missions discussed in section 1.3) and truncated
to a degree as low as eight is enough to justify the assumption that the residual
gravitational acceleration at GPS altitude is zero, thus introducing an error no larger than
about 10-3 mgal (see also (Jekeli and Upadhyay, 1990)). It should be noted that Jekeli
and Upadhyay (ibid), consider the reference model up to Nmax errorless, thus showing a
monotonic decrease for rms(i) as Nmax increases; here rms(i) stabilizes at about
0.6 x 10°3 mgal after Nmax = 8, due to the commission error of the lower degree

harmonics.

The effect on Av;, of the orbit errors 8r ¢ and Jr; of the low and high satellites is
considered next. For this purpose, it is assumed that a global network of tracking sites
on the Earth, simultaneously co-observes the GPS satellites being tracked by the low
orbiter, as it will be the case for all the missions discussed in section 1.3 (Pavlis, E. et
al., 1990). In such case the orbits of the GPS satellites and the low orbiter can be
estimated geometrically from differential GPS observations. Yunck and Wu (1986)
carried out simulation studies to assess the accuracy of such orbit determination for
TOPEX, and concluded that decimeter accuracy orbits are attainable with as few as 10
globally distributed tracking stations. The orbital accuracy in such non-dynamic
solutions is limited by the GPS data noise, the ground station position errors,
tropospheric and higher order ionospheric effects and antenna multipath, error sources
that have no significant dependence on altitude (ibid, 1986), so that 10 cm is also a
realistic (and probably too conservative) estimate for the orbit error of GP-B.
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Approximating the gravitational tensor M(p) by:

100
M(x)=-QM3[ 01 0] :
I’ Lo 0-2 (2.141)
which is sufficient for order of magnitude considerations (see also (Jekeli and Upadhyay,
1990)), and denoting by €’ the radial component (which is the most crucial for the current
application) of the acceleration error induced by radial orbit error dr, one has (see

equation 2.134):
Low satellite (So) : €] (mgal) = 2.4 x 10-18ro(m)

High satellite (S;) : € (mgal) = 4.3 x 10-33rj(m)

while the misregistration of the LOS direction, 8¢;c, introduces an error €, , Which

does not exceed:

€5, (mgal) ~ 4.2 x 10272 8r (m)

As it can be seen from the above estimates (which pertain to the GPS/GP-B SST
configuration), the orbit error of the GPS satellite and the misregistration of the LOS
direction introduce negligible acceleration errors. The orbit error of the low satellite
however, introduces an acceleration error that may reach 24 pgals in amplitude (for 8ro =
10 c¢cm) which can have a significant effect on geopotential estimation at the few
centimeter accuracy level, if its power is concentrated at low frequencies. Colombo
(1990) has shown that systematic errors in the satellite positions significantly affect the
recovered geopotential spectrum only up to about degree 10. In addition, comparing the
results of the analytical approach in the absence of such errors ("best case”), with those
obtained from a complete simulation where satellite orbits were estimated dynamically in
a simultaneous solution along with the geopotential spectrum (Pavlis, E. et al., 1990),
Colombo (1990) verified that systematic orbit errors can be effectively decoupled from
the gravitational signal in such global solutions, as long as their mathematical
representation is accounted for in the adjustment. Accordingly, one way of reducing the
effect of orbital errors on Avj,, is to pre-process smoothed values of the global set of
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SST data in a dynamic mode where the orbital parameters of all satellites and the low-
degree part of the geopotential spectrum (e.g. Nmax = 10) are simultaneously estimated
from the original GPS measurements. Avj, can then be referred to the adjusted orbits
and long-wavelength geopotential spectrum obtained from such global dynamic solution.
In such case, the smoothing of the original measurements is critical, since one wants to
minimize leakage of the higher-frequency content of the measurements to the lower-
frequency part of the estimated geopotential spectrum. However, the global character
(polar GP-B orbit) and the uniform coverage of the data works favorably in the
minimization of leakage effects. Obviously, as the maximum degree of the geopotential
model obtained from the global adjustment increases, the contribution of the residual Av;,
(with respect to this model), to the estimation of the disturbing potential T on the Earth's
surface, decreases. In the limit, if the model extends to the degree corresponding to the
resolution of the data at altitude (Nmax = 55 for GP-B), then only the ground
measurements, in the caps surrounding the computation points provide additional
information for the estimation of T. An alternative way of reducing the orbit error of the
low satellite is the use of laser ranging combined with the GPS tracking in a geometric
solution for its orbit detemlihation”(Eveﬁtt et al., 1989). In view of the magnitudes of
OR;, and &j,, which will be discussed next, the effect of orbit errors in the modeling of
Av;, does not appear to be a limiting factor. Accordingly, equation (2.134) becomes:

. . ¥
Avio = (SI o) efo +ORjo +€o (2.142)

where, in addition, it was assumed that the residual non-gravitational acceleration along
the line of sight, 8a'., is negligible. Such an assumption implies that non-gravitational
accelerations have been modeled perfectly as a result of the global adjustment of the SST

data.

The centrifugal term 8R|g is considered next. It can be easily shown (Colombo,
1981b), that:

Rio = 'I}'o €= —L‘(i_Iio .llio)z = _L“.i.'iol%OSzY
Pio Pio (2.143)
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where 1;0is the unit vector perpendicular to the LOS direction as defined in equation
(2.112), and Yy is the angle between f;,and nj,. The geometry of the vectors defined on

the plane generated by Ijo and f ;o is illustrated in Figure 8.

éio

Figure 8. Geometry of the Vectors Defined on the Plane of rio and [o

Subtracting the reference value RS, from the true value Rjo one has, due to
(2.143), for dRq:

38R0 = i i cos2y - -L-|i5fcos?ye ;
Pio Pio (2.144)

where /¢ is the angle between i §,and n§, To obtain a magnitude estimate of OR;o, it is

justifiable to set:

Pio=pPjo 3  COSY=COSY (2.145)

so that:

8Rio = —-{| £ 10l - | £ £l Jeos?y® = p—l— 811 1ol Jcosy®

¢ ¢
io io
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=L §{ %0t ioJcos? = 2-(i5o) B ioC0sY =

rs;
10 10

5Rio = _%_II :‘;0”8[ ioICOSBCOS?’f ’
Pio (2.146)

where the total differential 8( ol io} was approximated by the linear term in its Taylor
series expansion (linearization), and "B" is the angle between £ {, and 91 jo.

The last equation indicates that 8Rjo becomes maximum when y = 0°(180°), i.e.
when the relative velocity of the satellites is perpendicular to the LOS direction. If in
addition the satellites move in parallel and opposite directions (perpendicular to the LOS),
then the magnitude of their inertial relative velocity becomes maximum, equal to the sum
of the magnitudes of their individual inertial velocities. Under such circumstances the
rate of rotation of the LOS direction is maximized, giving rise to the maximum possible
centrifugal acceleration Rjo, as expected. This "worst case" will be considered next, in
order to estimate an upper bound for the magnitude of 6Rjo; the "best case” obviously
corresponds to Y = 90°(270°), when the satellites move towards or away from each other,
so that ¢;, remains fixed with respect to inertial space and Rjp = 0. For the "worst case”
one has from (2.146):

oRid ~ 2 k5oll5% iol| cosB| cos?y’

io

s % ll_'c10"8£ iol

10

< 2 (ig) +lesD il =

io

max J5Rid = 2 (|5 + )16t sl
Pio (2.147)

Making use of the energy conservation law (Jekeli and Rapp, 1980, p.‘4), linearized with
respect to the reference gravitational model to which 6Rig refers, and assuming that the
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motion of the high-altitude satellite is perfectly determined from that model, so that

8t ; =0, one has (see also (Rummel, 1980)):

ok ol = L[ T
| £¢| (2.148)

where:
T = T1s) - T"(r9 (2.149)

and T™ carries the same meaning as in equation (2.136) given before. Accordingly, an
upper bound for the magnitude of 3R;,, is given by:

R - 2-{1 + 927
pi |5l (2.150)

An estimate of the disturbing potential difference T, between the low and high satellites,
may be obtained in a global average sense, considering the radial arrangement of the
spacecrafts, by:

15
1) = | var [T ™(ro)] - 2 cov[F™ (ro), Ti)] yeo + var [T | . 2.151)

using the anomaly degree variance model of equation (2.135) to evaluate the disturbing
potential's variances and covariances. Approximating:

51 (42
|x] (2.152)

and using the nominal values pertaining to the GPS/GP-B configuration, estimates of
maxISR;J have been computed, for various degrees of truncation, Nmax, of the reference
model. These are given in Table 3.
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Table 3. Estimates of the Maximum Value Attainable by 6R;, for Various Degrees of

Truncation of the Reference Model (Units are mgals).

Nmax maxlSR;ﬂl

2 2.201

4 0.865

6 0.444

8 0.234

10 0.127
20 0.023

1 1.910 (%)
18 0.097 (*)

(*) Values correspond to the High-Low mission considered by Rummel (1980).

For comparison purposes, two additional values are listed in Table 3. These refer
to the High-Low mission considered by Rummel (1980), where the altitudes of the high
and low satellites were 35500 km and 250 km respectively. These two values have been
computed using the same anomaly degree variance model as in Rummel's study (ibid, p.
12). Comparing the above estimate for Nmax = 1 (i.e. when Tm represents the entire
disturbing potential with respect to the ellipsoidal gravity field) to the corresponding one
of Rummel's (ibid, p. 5, Table 1), it is seen that the former is about 7 x 105 times larger
than the latter. Colombo (1981b, p. 15) estimated the magnitude of the centrifugal term
8R;o for a Low-Low mission, and found a value 3 x 10# times larger than corresponding

estimate of Rummel (1980, p. 5, Table 1).

The reason that both the current estimates, as well as those of Colombo, are so
much larger than those of Rummel, is identified here to be an unjustifiable substitution of
the term il _i:iolz], by the term |5j:iol2, in Rummel's derivations (ibid, pp. 4-5). Such
substitution yields an expression for the average magnitude of 6Rjq (ibid, p. 5, equation
12), which is in fact independent of the relative inertial velocity of the two satellites, thus
contradicting the underlying physical meaning of dRjo. Also apart from underestimating
the magnitude of 8Rjo, such substitution implies that 8Ro is always positive (Jekeli and

Upadhyay, 1990, p. 10,984), while there is nothing dictating a fixed sign for ORio,
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despite the fact that Rjo itself is a non-negative quantity (see equation (2.143)). As it can
be seen from equation (2.146), 8Rj, carries the same sign as cosp, and the sign of cosf
cannot be determined since it depends on the relative orientation of if, and the unknown
vector 8f ; To the author's knowledge, this erroneous substitution appeared originally
in Hajela's derivations (1978, p. 5, equation 2.2), and has been adopted afterwards in a
number of investigations including the recent study by Jekeli and Upadhyay (1990). The
maximum magnitude of 8R;, for a reference model complete to degree and order 8 is
about 0.4 mgals for the STAGE mission considered by Jekeli and Upadhyay (ibid),
hence 8R;o cannot be neglected in view of the 0.3 mgal total noise level that they have

estimated for the (pseudo) observations Av;, (ibid, p. 10,983).

The existence of the centrifugal term 8R;q in equation (2.142) makes the analysis
of the SST observational system, in terms of the pseudo observations Avj,, practically
untractable. In contrast, such a problem is not encountered if the primary GPS
observables (carrier phase and pseudo-range) are used in a global dynamic solution for
the simultaneous estimation of satellite orbital parameters and geopotential coefficients
(Pavlis, E. et al., 1990). In the current application, which is of local character, to
minimize the magnitude of 8R;,, so that its omission can be justified, one may consider

the following strategies:

(@) Use of a higher degree reference geopotential model for the formation of Av;,. As
it can be seen from Table 3, a model complete to Nmax = 20, implies a maximum
expected value of 0R;, of about 23 pgals, which may be considered negligible. The
maximum degree of the reference model however, should be selected with due
consideration to the ratio of the residual signal to the noise of the pseudo
observations Av;, as was discussed before.

(b) In a Multiple-High-Single-Low SST configuration, where as many as 8 GPS
satellites are being tracked simultaneously by the low orbiter, one may select for the
formation of Av;, pseudo observations, those GPS satellites for which the quantity

fio = —2-| i §,] cosy®
Pio _ (2.153)
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is minimized (and/or does not exceed a pre-established threshold value). Such editing
criteria should be considered in conjunction to other geometric requirements (such as
minimum elevation angles of the GPS satellites). It is obvious that such an editing
procedure introduces substantial complexity to the data processing algorithm.

Finally, the noise €, of the pseudo observations Av;, is considered following the
lines of Jekeli and Upadhyay (1990). As it can be seen from their analysis (ibid, p.
10,976, Table 2), in the non-differential mode of observation, the major error source
contributing to €j, arises from the frequency instability of the GPS satellite oscillator.
This error source effectively cancels out if single differences are formed between the
phase measurements to a GPS satellite as observed by the low orbiter and a ground
receiver. In such case, the total error €, of the residual acceleration along the line-of-
sight, for the case of GP-B (10 cm orbit error, drag-free instrumentation), was estimated
to be about 0.2 mgals.

In the following error analysis however, it will be assumed that the SST
configuration contributes information on the vertical component of the gravitational
acceleration at altitude. The error of the vertical component of the acceleration may be
approximated by multiplying €jo by the vertical dilution of precision (VDOP) (Jorgensen
1980) as described by Jekeli and Upadhyay (1990, p. 10,978). In their analysis it was
found that for the Shuttle being the low orbiter, a representative value for VDOP was
about 2. Adopting the same value for GP-B (which is a rather conservative assumption),
one finally obtains 0.4 mgal error for the vertical component of the residual gravitational
acceleration at GP-B altitude.



CHAPTER IlI
GLOBAL MEAN SQUARE ERROR ESTIMATION

As it was discussed in section (1.3), the geopotential differences between points
separated by ocean, whose geocentric positions are known with accuracy of a few
centimeters, will be estimated by combining information from:

(a) gravity disturbance measurements on the Earth's surface

(b) gravitational acceleration "observations” at the altitude of a low Earth
orbiter

(¢)  aglobal geopotential model.

The development of appropriate analytical tools that can be used to estimate the
expected accuracy of the resulting geopotential differences, based on assumptions related
to the spatial arrangement and the uncertainties of the input data, is the subject of this
chapter. In practical applications, the geopotential differences will be estimated using
least-squares collocation (Isc) (Moritz, 1980) since this technique can combine efficiently
observations of different functionals of the gravitational potential, and assures that the
resulting estimates are based on optimal use of the information contained in the
observations. In addition, Isc can be used to assess the expected uncertainty of the
estimated values, and thus offers one possibility for the means with which the current
error analysis could by conducted.

For given error properties of the input data, the (true) error of the estimated
geopotential difference depends on the relative positions of the observation points with
respect to the points to which the difference refers, as well as on the absolute positions of
the latter. In that sense, the error of the estimated geopotential difference between points
which lie on areas where the gravity field changes rapidly is likely to be larger than
between points which lic on smoother areas of the field. The (squared) error estimate
obtained from Isc on the other hand, represents a global average value, whose meaning is

64
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as follows (Colombo, 1980). Keeping the relative positions of observation and
estimation points fixed, subject the entire pattern to all possible rotations over the sphere.
After each rotation measurements are taken, the Isc estimation is performed and the
corresponding true estimation error is evaluated somehow. The global average of the
squares of these errors, represents the squared error obtained from Isc. As a result of the
use of homogeneous and isotropic covariances, if the relative geometry of observation
and estimation points remains fixed, and so do the error properties of the data, the error
estimate obtained through Isc will remain unchanged regardless of the absolute position
and orientation of the whole observation/estimation pattern on the terrestrial sphere.
Moreover, as it is well known, the Isc estimator, by its definition, ensures that this global
mean square error is the minimum among the corresponding ones of any other linear
estimator (Moritz, 1980, pp. 122-132). This property, as well as the ability of lsc to
accommodate different data types and arbitrary spatial arrangements of
measurement/estimation points, are responsible for the wide application of the Isc

estimation technique.

To benefit from the above properties however, one must take up the computational
effort of forming and inverting covariance matrices whose dimensions equal the number
of observation points. In actual implementation where the geometry of
observation/estimation points is given and one is interested in the most rigorous
evaluation of the estimates themselfs, as well as their expected errors, such computational
effort is well justified. However, in error analysis studies the relative geometry of
observation and estimation points is more or less a matter of assumption, and one is
interested only in the expected errors of the estimates and not the estimated values
themselves. In addition, if one strives for estimates which will not be significantly biased
by uneven data distribution, it is necessary to impose some kind of requiréments
pertaining to the uniformity and spatial density of the measurements. Under such
circumstances, if one is willing to accept additional assumptions that result in symmetric
patterns for the geometry of the observation/estimation points, efficient techniques can be
used to assess the expected errors of the estimates, resulting in large computational
savings. Obviously, the reliability of the error estimates evaluated this way , depends on
how well the assumed symmetric data arrangements compare with actual data
configurations, at least in a global average sense.
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The simplest way to assess the error of a geopotential difference, estimated on the
basis of a global geopotential model and terrestrial-gnly measurements, is through error
propagation based on truncation theory. As it will be seen however, this technique
cannot be used if gravitational accelerations at altitude are to be included in the estimation.
On the other hand, least-squares collocation using "ring averages” (Colombo, 1980,
section 4.1) can accommodate both data types (either separately or in combination) and is
only restricted by assumptions related to symmetries in the measurement pattern. In that
sense, the use of ring averages provides a compromise which maintains the efficiency of
integral formulas while incorporating the versatility of Isc. The analytical formulation of
these techniques and their intercomparison are discussed next. In addition, the
covariance models for the signals and the noise of the measurements which will be used
in the numerical analysis are presented afterwards.

3.1 Error Propagation Using Truncation Theory

The use of truncation theory for the assessment of the global mean square error of
geoidal undulations estimated from gravity disturbances measured over a cap centered at
the computation point, and a global geopotential model, has been considered variously by
Jekeli (1979) and Sjoberg and Fan (1986). In the following discussion the notation used
by Despotakis (1987), for the corresponding case of cap integration of gravity anomalies
(Stokes' kernel), will be adopted.

Equation (2.102) of the previous chapter is written for convenience as follows:

5, A) = ZIE f I H(y)D(5’, 1')do

o (3.1)
where:
D(8", 1) =[N{8g + Bga - ep + g1) - ek 8. 1) . (3.2)

The n'f - degree and m'h - order ellipsoidal harmonics of D and T are related by:

D8, A) = (n + T8, 27) (3.3)
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as it can be easily seen from equations (2.98) and (2.101). In addition, the solid angle
corresponding to the cap centered at the computation point, is denoted by G, so that:

c=o.+(c-0;) , (3.4)
and a kernel modification function Wj(y) is introduced, such that:
H(y)=Hfy)+Wily) ; O0<y<n (.5)

and the modified kernel Hj(y) is defined through the last equation, given the definition of
Wi(y). Due to (3.4) and (3.5), equation (3.1) becomes:

[ [
T(S, >»)=317; f J Hi(y)D(, N)dc-;;% f J H;(y)D(¥, A")do

o- Gc

4n

[
+-L I H; (y)D(®’, X)do + Zly?f I Wi(y)D@’, V)do
J
o- 0. o (3.6)

A function H; () is now introduced, defined by:

Hj(y)=

— {0 if 0Sy<vy,
Hi(y) if yo<ysn 3.7

where Y, is the semi-aperture of the spherical cap 6¢. Accordingly, equation (3.6)

becomes:

[ _
T, A) = ZIEJ [ [Hi(\jl) - Hi(\y)] D(¥’, M)do

+ ﬁ J f [ [Hi(w) + Wi(‘l’)] D, M)do

(3.8)
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As long as the modification function Wj(y) is at least piecewise continuous in the interval
0 <y <= (in which case H;(y) and Hi(y) will also be piecewise continuous), it may be

expanded in a series of Legendre polynomials, as:

Wity) =, l“—;—L WinPa(cosy)

n=0

where:

9
Win = I Wi(y)Py(cosy)sinydy
0

Similarly, for Hi(y) and Hi(y) one has:

ﬁi(‘l’) = Z Z'DZLL Qin(Wo)Pn(cosy)

n=0

r

where: Qin(Wo) = I Hj(y)Pn(cosy)sinydy
0

]

Qir{Wo) = I H;(y)Py(cosy)sinydy

Vo

and:

Hiy) =2, 221X Py(cosy)

n=0

n
Xin = I Hi(y)Pp(cosy)sinydy
0

3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Making use of the decomposition formula of the Legendre polynomials (Heiskanen and
Moritz, section 1-15), and the orthogonality of the surface harmonics, it can be shown
easily that due to (3.9), (3.11) and (3.13), equation (3.8) becomes:

T(6.3)=1 3, (Xin- Qo] D8, 1)+ 1 3 (Wi + Qulyo] D5, 3
n=0 n=0 (3.15)

where:

D5, 1) =r§; D8, 2) . (3.16)

Equation (3.15) is rigorously equivalent to (3.8) and provides the "frequency

domain" counterpart of the latter. From (3.15) and (3.3) it can be seen that the quantities
Xin and Wiy, should fulfill the relation:

Xin +Win =—2— ; n20

n+1 (3.17)

which provides the means of evaluating X;,, without performing the integration (3.14),
once Wi has been evaluated.

For the purpose of practical implementation, one has to consider that one part of
the available information (the gravity disturbance measurements) represents "space
domain" quantities, while the other part (trhcrr gfobal gébi)otcgitial model) is given in terms
of spectral components. It is thus reasonable to seek a combination of equations (3.8)
and (3.15) such that both kinds of information can be considered simultaneously in an
efficient manner. Obviously, such a combination is meaningful only if the cap
measurements are more detailed and/or accurate than what can be deduced for their values
from the global model, and the cap does not extend to y = . In that sense, one has from

(3.8) and (3.15):

n=0

T(8.2) = L f f Hi (D&, M)do +1 3. (Wi + Qulwoll DB A)
& ) (3.18)
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whereby the integral term in (3.18) represents the cap contribution to T(5, A), implied by

the modified kernel Hj(y), and the infinite sum represents the remote zone contribution to
T(S, A) implied by the original kernel H(y) plus the cap contribution of the kernel
modification Wj(y), i.e.

LY [Win + Qulvo] D8, 1) = & f f H(y)D(', V}do + L f f W;(y)Dl&’, 1')do.
0-Oc

n=0
0-O¢

(3.19)

Equation (3.18) (which is rigorously equivalent to both equations (3.8) and
(3.15)), forms the basis upon which a computational formula suitable for practical
implementation can be developed. Obviously, different choices of the modification
kernel Wj(y), yield different estimators of T(5, A), with varying propertics. However,
regardless of the choice of Wi(y), equation (3.18) states that to determine the true value
of T(3, M), requires continuous and errorless data D(8', A') inside the cap of integration
o, and perfect knowledge of the spectrum Dy(5, A) up to infinite degree. In practice,
none of these requirements can ever be fulfilled; cap measurements can only be acquired
at a finite number of discrete locations and are contaminated by observational noise, and
in addition the knowledge of the spectrum extends to a finite degree and is imperfect.
The errors that these imperfections induce to the estimated value T(3, A) of the disturbing
potential are examined next, along similar lines to the derivations of Christodoulidis
(1976).

In practical implementation, the cap integration in (3.18), has to be replaced by a
finite summation, since the function D(8', A") is not given in an analytic form but has
only been sampled at discrete locations (Heiskanen and Moritz, 1967, section 2-24). To
avoid biasing the result of this numerical integration, due to uneven distribution of the
point measurements, one usually forms from the original point data, a set of area-mean
values on a fine grid (e.g. 2' x 2'), covering the entire cap o¢ (Despotakis, 1987). It is
assumed hereon that the cap data consist of area-mean values _ij, on an equiangular grid
in terms of spherical distance W and azimuth a (Ay = Ac), centered at the computation
point P(5, A). Note that y and o are evaluated from ellipsoidal coordinates (8, A) and
(8', A"). The indices (i, j) identify the location of the compartment to which the area-
mean value refers, in a two-dimensional array where:
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i=0,1,2,..,Nr-1 ; j=0,1,2,.,2N-1 . (3.20)

As illustrated in Figure 9, the number of "rows" (or "rings") of area-mean values around
the computation point is Nr, while each ring contains 2N compartments, where:

N E (3.21)

Figure 9. Arrangment of Cap Data Around the Computation Point P.
In addition, the estimated area-mean value l_)fj, differs from the corresponding true value
D;;, by the true error €Df}, so that:

D; =D§+eD§ . (3.22)

As far as the available spectral information is concerned, a finite number of harmonics,
Dﬁ(ﬁ, 7&), up to maximum degree M, is assumed to be given. These are contaminated by

commission error eDﬁ(S, 2.), so that:
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D5, A)=D5,A) +eDg(5,2) ; n=0,1,.,M (3.23)

where D,.(S, 7\.) represents the true value of these harmonics. Based on Dfjand D°,.(8, l),
the following estimate of the disturbing potential is evaluated:

N Ned 2N M c
5. 4)= L Z:,) 2(; DijI I Hy(y)do + %Zo [Win + Qu{Wo)] D5 (8, 3) (3.24)
1=0 )= n=
Gij

where oj; is the solid angle (area on the unit sphere) corresponding to the (i, j)th
compartment, and the subscript k was used above to discriminate different kernel

selections. The true error of the estimate "I\{S, X) is given by:
e1(5,1)=T(5,2) - T(5,2) (3.25)

so that, taking into account (3.18), and (3.22) through (3.25), one has:

€1(5, )= &(5, 1) + &8, 1) + 38, 1) + 45, A) (3.26)

where:

Nr-1 2N-1 \
eld,2) =-L [ [ He(yp(8,0)do - LY Y Dij| | Hdw)do (@
4r 4n i=0 =0

oc Oij

Nr-1 2N-1 '
eo(3, A) =f- el‘)fjf f Hyy) do (b)

T 20 j=0
Oij
(3.27)

M
es(8,A) = 1 3 [Win+ Qualvo)] eD5{5. A) ©

n=0
et ) =1 3 [Wint Qulwo] Di3, 3) @ |

n=M+1
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The following nomenclature will be used for the above error components

(Christodoulidis, 1976):
€, : sampling (or discretion) error of the cap integration
€, : propagated error of the cap data
€3 : commission error of the geopotential model

€4 : omission error of the geopotential model.

It should be emphasized that el—)‘fj refers to the area-mean value of the (i, j)th
compartment, and not to the original point measurement, although in practice, for
compartments as small as 2' x 2, the estimated error of such area-mean value differs
very little from the corresponding error of a point measurement.

The error component €;(J, A) is considered next in detail. The following notation
is introduced:

£1(3,A) =a(d, L) - b3, A) (3.28)

where:

al8,2) = ﬁ f I Hy (y)D(5’, 1")do (a) \
k4 ,
> (3.29)
Nrl 2N-1
b(3, ) =ZL > zDijfij(\V) do (b)
T -0 j=0
Glj

From equation (3.15) one has immediately:

a®.2) =1 X [Xin - QuelwolPn(8 )
n=0 (3.30)

while for b(3, A), employing in a discretized manner the same technique used before to

derive (3.8) from (3.6), one can write:
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b(3, A) = by(3, A) - ba(3, A) (3.31)
where:
Na2N1  f " \
b8 =LY YDyl |H(Wdo @
Ti0 j=0 |

Gij
(3.32)
N-1 2N-1 ([

ba(8, M) =z ¥ X D;; Jwde  ®

=0 =0 )
O'ij

Consider the term by(8, A) first; due to equation (3.13) and the decomposition formula:

P,(cosy) = 551+—1 nén Yorl0, A) Yl 2)

(3.33)
equation (3.32a) becomes:
L N L _ _
b1(5, A) =41t lgo & Dy; ,é)zn_—L2 Xxn —1—-2n " 1m2=-nYnm(6’ )\.) Ynm(ﬁ WA ) do =
Gij
PR Sk S n _
b1(d, A) = i E} 2 Dijré)xkn m2=_nYnm(5, X)I] Ynm(5 s A )dO' . (3.34)

Gij

The coordinates of the variable point of integration (&', L"), are related to the integration
variables spherical distance ¥y and azimuth o with respect to the computation point
P(3, A), by the well known formulas (Heiskanen and Moritz, 1967, p. 113):

cosy = cosdcosd” + sindsind’cos(A"-4)  (a)

(3.35)
N sind’sin(A”" - A) ®)
sindcosd’ - cosSsinS’cos(X’ -)
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and the integral over ojj will be denoted by IYpm(i,j) so that:

Vi+tdy paj+Aa
f ] Yom @, A)do = I f Yoml®', V) sinydydo = Wamli, §) - (3.36)

Vi Qj
Gij

Re-arranging the order of the summations in (3.34) one has, due to (3.36):

N-1 2N-1
bi(®, 1) =1 Zxkn 2 Yorel3, x)[i Y > DijYam(i, J)jl

n=0  m=n i=0 j=0 (3.37)

The expression inside the brackets in (3.37) is readily recognized to represent a
quadrature formula (Colombo, 1981a), according to which an estimate ﬁ,m of the true
spectrum Dy, of D(§, A) may be obtained, given a global set (N x 2N) of errorless area
mean values Eij, on the equiangular grid Ay = Ax with pole the computation point
P(5, A). Hence:

N12

Dun= -3 Z i [Yam(@, )

er R (3.38)

It should be mentioned here that the coefficients ﬁ,m obtained from (3.38) refer to
the coordinate system associated with the (3, A) grid, although the area-mean values Dj;
are given on the (y, ) grid with pole the computation point P(3, ). Although in theory
the two grids do not have to coincide, this incompatibility makes the practical evaluation
of the quadrature formula (3.38) extremely inefficient, basically because the computation
of integrated Legendre functions (upon which the evaluation of I¥n(i, j) depends),
cannot be accomplished using efficient recursions as those derived by Paul (1978).
However, equation (3.38) is used here as an intermediate step to provide insight and aid
in the derivation of the final expression for the sampling error. As it will be seen, the
final formula for the sampling error does not require for its evaluation the actual
implementation of (3.38). Due to (3.38) equation (3.37) becomes:

b1(5, A) = '1-2 anﬁn (0, A)
2.5 _ (3.39)
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where:

6n(s’ )‘-) = > 6nm?nm(& A .
n;n ) (3.40)

Following the same procedure for ba(3, A), and taking into account equation (3.31), one
obtains for b(5, A):

oo

b4 = £ ZO [Xin - Qin (Wo)] D, 1) (3.41)

Hence, due to (3.28), (3.30) and (3.41) the sampling error £)(3, A) finally becomes:

&8, 7-)=%Z Xin - Qn (Wo)]Sr(3, &)
n=0 (3.42)

where:

S8, A)=D,(5, A -f),,a,x=n Dy - Do) Yam (8, A
(6.1)=0f5.2) - D6 3)= 3, [Dan- Bun] Ton®. 1 e

and Sp(d, A) represents the nth - degree surface harmonic of the sampling error associated
with the quadrature formula (3.38).

Proceeding along similar lines, one has for the propagated error €2(8, A):

oo N-1 2N-1
£2(8,A) = %2 Xin - Qua(Wo)] ZYnm(s x)[—l—Z Y €D T¥amf(i, )} . (3.44)

n=0 i=0 j=0

One may view the true errors eT)icj of the area-mean values as discrete samples of an
error function defined over the full solid angle (unit sphere). To be more precise, the
totality of the eT)icj values represents one realization of a stochastic process on the unit

sphere (Moritz, 1980, p. 279). This error function can be expanded in surface
(ellipsoidal) harmonics, and the coefficients epm of such expansion may be approximated

by the following quadrature expression, given the discrete samples el_)icj :

r

N1
£ch IYnm(1 j)
i=0 (3.45)

- Em =
41cBn i

-
1]
(=]
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where B, is the Pellinen smoothing factor of degree n, which corresponds to a spherical

cap having area equal to the area of an equiangular compartment in the ring with i = N/2
(the "equator” of the (y, o) grid). It is acknowledged here that the use of smoothing
factors B, which are independent of y (or equivalently of the ring index i) is only an
approximation, since the area of the equiangular compartments on the (y, o) grid varies
with y as it can be seen from Figure 9 (detailed discussion of this aspect is given in
Katsambalos (1979)). Using a complete (N x 2N) set of area-mean gravity anomalies on
an equiangular grid, it has been verified numerically that the spectrum implied by a
quadrature formula of the type (3.45) (ring-independent By) differs from the spectrum
implied by a quadrature formula using ring-dependent B, factors, by about 15% near the
degree corresponding to the Nyquist frequency (n = N). In view of the fact that the error
properties assigned to the data are to a significant extent a matter of assumption, the
approximation introduced in (3.45) by using ring-independent B, factors appears to be

acceptable. Accordingly, equation (3.44) becomes:

€28, 1) = 1 3 BalXin - QualWo)l€n(8, 1)
1=0 (3.46)

where:

n

3, A)= Ymi®, A
en( ) mz:;nﬁnm ( ) (3.47)

The formulation suggested here to model the sampling (or discretion) and the
propagated errors is slightly different than the one originally proposed by Christodoulidis
(1976) and adopted by Despotakis (1987). Christodoulidis (1976) examined alternative
techniques to model the sampling error, and concluded that a computationally manageable
and accurate enough model would be (in the current notation):

oo

z [an - le(Wo)] Dn(5, l) .

a@®n =2
e (3.48)

(The fact that the analyses cited above were made for geoidal undulations obtained from
integration of gravity anomalies is immaterial, since the four error sources identified in
equation (3.27) are present in both integral formula applications.) The model (3.48) is
based on the assumption that the data inside the cap of integration contain spectral
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information only up to degree N, which is related to the size of the data compartment by
the well known rule of thumb given in (3.21). This is one possible approximation;
however, equation (3.48), rigorously interpreted, represents the sampling error for the
case of continuous coverage inside the cap with band-limited data (containing spectral
information only up to degree N). Such an approximation of the real-world situation
(where continuous coverage can never be achieved, and the spectral content of the area-
mean values is rather difficult to assess), is less realistic, and does not yield a
significantly simpler model, than the model (3.42) proposed here.

As far as the propagated error is concerned, the Pellinen smoothing factors have
been introduced here to account for the fact that area-mean values are used for the cap
integration, while error covariance models in practice usually describe error properties of
point data. Despotakis (1987, equation 2.26) altered the original formula for the
propagated error as given by Christodoulidis (1976, equation 150), by truncating the
error spectrum at degree N, effectively assuming that all error contribution above this

degree is smoothed out from the area-mean values. In the model (3.46) proposed here,
the error tapers off gradually as the degree n increases, since Bhn > 0asn— e

According to the above, the expected global rms value of each error component
can now be derived. The following definitions are introduced first for notational brevity:

XQun = Xkn - an(‘yo) (@)
(3.49)
WQin = Win + Qun(Wo) ()

where it is understood that both XQgn and WQxn depend on the semi-aperture o of the

cap. Taking the total average E (Moritz, 1980, p. 100) of the square of each error
component £¢(£ = 1, 2, 3, 4), one has due to the orthogonality of the surface harmonics:

rms¥e;) = E[eX5, A)] =% 2 XQhasn (3.50a)
& .50a

and similarly:
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ms¥es) =1 3, (BoXQuf'on  ®)
n=0
1 M
rms7{£3 Z IE) WQanSdn (C) (3.50)
rms(es) = 1 Z W, dn (d)
n=M+1

where the linearity of the operator E was used, and the following notation was
established:

—E[s2(5, 1)) = M[s2(5, A) @)

on=E[e}5, 1] (®
(3.51)
ed, = E[eD5, 1) ©

d, = E[DY5, 1)] = M5, A G}

The homogeneous and isotropic space averaging operator M is defined by (Moritz, 1980,
p. 82):

2 orm 2n
M) =L I f f ()sinddddAdor .
8% Jr=0 J5=0 Ju=0 (3.52)

In addition, the total average of the products €4(A).e¢(B) (£ = 1, 2, 3, 4) of each error
component for two points A and B separated by spherical distance yy is given by
(Christodoulidis, 1976):

rms2[€;(A).€1(B)] = E[€1(3a, Aa).€1(8B, AB)]

=1 2 XQzlmsn (coswyq)
4120 (3.53a)
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and similarly:
rmsZ{ex(A).€2(B)] = % Y (BXQun) GrPr{cosya) (b) \
n=0
M
rmsZes(A).e3(B)] = & 3, WfreduPo(cosya) © (3.53)
n=0
rms?e4(A).e4(B)] =% )_“, W daPo(cosya) @

Since the error components identified in (3.27) originate from independent causes,
it is reasonable to assume that these errors are uncorrelated (it needs to be assumed here
that the global geopotential model has been derived independently of the cap data). In
such case, the expected global rms error of the geopotential estimated by (3.24), is given
by: '

T4 112
rms(eT) = [Z,l rmsz(e{)] , .54

while the expected global rms error of the geopotential difference E?AB, between the
points A, B separated by spherical distance yq is given by (Christodoulidis, 1976, p. 43):

1k

4 4
nns(eTAB) =v2 { Y., msZe,(A)] - Y, mmsZe (A).e, (B)]
L=1 2=1 (3.55)

The above formulation enables one to estimate the expected global rms errors in
geopotential and geopotential differences, obtained from the estimator (3.24), once
appropriate models have been established for the degree variances sy, On, €dn and d;.

As far as the selection of the kernel modification function is concerned, two
alternative principles may be followed for the definition of Wi(y):

(a) Deterministic approach; The selection of Wi(y) here is made in such a way, that the
resulting kernel function that corresponds to the remote zone contribution ("truncation
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kernel" - see equation (3.19)), possesses eigenvalues which converge to zero more
rapidly than those corresponding to the unmodified kernel H(y) (Jekeli, 1980). In this
manner, one attempts to reduce the error arising from the lack of detailed data outside the
cap of integration, taking also advantage of the information provided by a global
geopotential model. The increased convergence rate of the eigenvalues of the truncation
kernel is accomplished analytically, by removing the discontinuity of this kernel (Meissl's
method) or the discontinuities of the kernel and its derivatives (Molodenskii's method) at
Y = VY,, as discussed in detail by Jekeli (ibid). Such modifications are made without

considering the error properties of the cap data or of the available geopotential model.

(b) Stochastic approach; The determination of Wi (y) here is accomplished numerically,
by imposing the condition that the resulting global rms error of T is minimum. Such
condition yields a linear system of equations for the eigenvalues Wiy of the modification
kernel. This approach has been put forward by Colombo (1977), who considered the
minimization of the truncation error only, and was developed further by Sjoberg (1986)
to account for all error sources identified in equation (3.27). The eigenvalues Wiy
determined in this manner depend on the assumed error properties of both the cap data
and the geopotential model.

Despotakis (1987) intercompared Stokes' kernel and its modifications according to
Meissl's, Molodenskii's and Sjoberg's techniques, in a global rms error analysis fashion,
as well as in actual geoidal undulation computations. His analysis indicated that in a
global average sense and for cap sizes smaller than about 5°, the computationally simpler
technique of Meissl is expected to be almost as accurate as the more demanding
techniques of Molodensky and Sjoberg. In Despotakis' actual computations, Meissl's
and Sjoberg's techniques yielded results of practically the same quality (ibid, p. 97, Table
28).

For the following analysis the original kernel of Hotine (k = 1) and its
modification according to Meissl's suggestion (k = 2) will only be considered. For these

cases one has:
Unmodified Hotine's kernel (k = 1)
Wiy)=0; Hiy)=H(y) - 0<y<snm (3.56)
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and the eigenvalues of the kernels W1(y), Hi(y), and Hj(y) are given by:

Win=0 (a)\
Xip=—2 (b)

"o+l (3.57)
Qin(Yo) =Qn(Wo) = f H(y)Py(cosy)sinydy © }

Yo
for n 2 0. The coefficients Qu(y,) should not be confused with the corresponding
Molodensky truncation coefficients referring to Stokes' kernel.

Meissl's modification (k =2)

Wa(y)=H(yo)= Hy ; Ho(y)=H(y)-H, O0<y<nm (3.58)
and the corresponding eigenvalues are:
(" { 2H, if n=0
W2n = Ho Pn(COS\If)Sin\Vd\lf => wZn = ]
Jo ‘ 0 if n>0 (3.592)
2. if n= -
m—— 2H, if n=0
Xop =
-2 :
n+1 if n>0 (3.59b)
¥/ T
Qu(yo) = I [H(y) - Hy] Py(cosy)sinydy = Q{y,) - H(i P, (cosy)sinydy
° o

The last equation, due to the recurrence relations of the Legendre polynomials (see
Appendix A, equation A.15), can easily be reduced to:

Ho(1 + cosy,,) if n=0
Qan(Wo) = Qn(Wo) - : (3.59¢)

KHf—l [Pnn(COSWo) _Pn-l(COSWo)] if n>0
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The above expressions for W, X2q, and Qon(V,) are strictly valid for 0 <y, < «T, due
to the singularity of Hotine's kernel at y = 0. The case y, = 0 implies that no cap data
are used in the determination of T, hence only the commission and omission error of the
geopotential model contribute to the error of T. In such case the sum of the eigenvalues
Win plus Qxn(Wo) (which appear in equations 3.27¢ and 3.27d), always equals 2/(n + 1),
regardless of the selection of the kernel modification Wi(y).

From the numerical point of view, it is obvious from the previous formulation,
that only the evaluation of Qu(y,) is a computationally complicated process. Jekeli
(1979) developed an efficient recurrence relation for the evaluation of Qu(Wo) (Yo # 0).
His technique was expanded in this study and a similar recurrence relation was developed
for the more general case of Pizzetti's extension of Hotine's kernel, i.e. for the kernel
H(R/r, ¥) where r 2 R. The detailed derivation of the recurrence relation for the
truncation coefficients Qn(R/r, Wo), corresponding to this kernel, is given in Appendix A.
In case one postulates the absence of the zeroeth- and first-degree harmonics from the
gravity disturbance, the kernel HR/r, W) requires corresponding modification (Jekeli,
ibid), and the resulting kernel H*(R/y, w) (i.e., HR/r, W) less its zeroeth- and first-
degree harmonics), implies a different set of truncation coefficients Qqn(R/r, wo). The
derivation of a recurrence relation for Qa(R/r, Wo) is given in Appendix B.

The zeroeth-degree coefficients Qko(Vi), 1 =0, 1, 2, ..., Nr provide an efficient
way for the evaluation of the discretized integral over the cap, as long as the cap
measurements are defined on the (y, o) grid. Denoting the cap contribution to the

disturbing potential by Cap(yo), so that (see equation 3.24):

Nr-1 2N-1
Cap(yo) =712, 2, j [ f Hyy)ds
i=o j=o0
. Oij (360)

one can easily see that due to (3.12):

f I Hy(y)do = Ao] QuoWi) - Quo(Wi+1)]
o 7 (3.61)

so that (with obvious notation for Qxo):
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Nr-1 2N-1 —c
Cap(yo) = 3, & [Quel) - Qudli + 1] [;,;z AaDu‘]

= P (3.62)
Denote:
- LYl -k 20 ©
2n i 2N im0
(3.63)

AQuoli) = L[Quli) - Queli + 1) ()

so that Df represents the ring-average "observation” of the i-th ring, and AQxo(i) the
semi-difference of the two values of Qo at the spherical distances y; and 41 bordering
the i-th ring. Accordingly, the cap contribution Cap(yy) is given by:

Nr-1

Cap(yo) = 2 AQuo(i)Df
“ (3.64)

and this equation demonstrates the fact that the cap contribution to the disturbing potential
is the weighted sum of the ring-average "observations” Dj, with weights the quantities
AQgo(i). Equation (3.64) represents a rigorous evaluation of (3.60), and is a
consequence of the isotropy of the kernel Hx(y) (no dependence on azimuth) and of the
particular selection of the data grid (y, o). The form of equation (3.64) is valid even if
the "width" of the rings (i.e. Yi+1 - Vi) and/or the number of compartments per ring (i.e.
Aar) vary with the distance y from the computation point, as described in Heiskanen and
Moritz (1967, p. 120), provided of course that D; and AQgo(i) are evaluated
accordingly. As it is well known (ibid, p. 120) the disadvantage of using the (y, o) grid
to register the data, is the need to re-evaluate _Dicj (or _ﬁf) as one moves from one
computation point to another. The alternative of course, is to register the data with
respect to the (5, A) grid (ibid, p. 117), but then the integration of the kernel function
over the data compartment has to be performed numerically. Provided the original point
measurements are available (so that one can decide upon which grid to use to register the
mean values) and if the computation points are few in number and randomly distributed,
the (y, o) grid is inherently better suited for cap integration.
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3.2 Error Assessment for the Over-Determined Boundary Value Problem

The formulation given in the previous section for the error estimation of the
disturbing potential (or the disturbing potential difference), obtained from cap integration
of gravity disturbances and a global geopotential model, is applicable only in case the
computation points lie on or outside the sphere to which the gravity disturbance data
refer. This is due to the fact that Hotine's integral formula (upon which the entire
derivation was based) is the solution of Neumann's boundary value problem for the
exterior space of a sphere. The estimation of the error of disturbing potential on the
Earth's surface, obtained from gravity disturbance measurements at altitude requires
alternative treatment. In addition, if observations at altitude are to be used in combination
with terrestrial measurements, then the boundary value problem in question becomes
over-determined, as opposed to the uniquely-determined Neumann's problem solved by
Hotine's integral. The statement of such a problem, for the case where the known
boundary surfaces are concentric spheres may be given as follows (see also Figure 10 for
notation definitions):

"Determine a function T, harmonic in the infinite region outside the sphere (O, RT) and
regular at infinity, if its normal (radial) derivatives (-0T/dr) obtain prescribed values on
the two concentric spheres (O, Rt) and (O, Rg) where Rs =Rr+hand h > 0."

Since the boundary values on (O, RT) alone, are sufficient to determine T outside
(O, RT) uniquely (through the solution of Neumann's problem), and since the same
holds true for the boundary values on (O, Rs) and the space outside (O, Rg), existence of
a unique solution to the over-determined problem requires a compatibility condition to be
fulfilled between the two sets of boundary data. This condition can easily be obtained
from the following considerations. Let D¥ and D§ denote the boundary data on the

spheres (O,RT) and (O,Rg) respectively. Let also P(Rg, 6, A) be an arbitrary point on
the surface of the sphere (O,Rs). Then, due to equation (2.67) one has:

Tp= 4&;“;- I f H(y) D5(6", A')do
(3.65)
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while due to equation (2.64):

Tp= % I f H(%T; , w) DX(®’, X')do

Hence, for a unique value of Tp to exist, D} and D§ should fulfil the compatibility

(3.66)

condition:

f f [H(I%I V| RrD; (8, M) - HY) RD§(O', A)]do =0
S (3.67)

for every point P(Rs, 6, A) on the sphere (O, Rs). In that case, due to Stokes' theorem
(Heiskanen and Moritz, 1967, pp. 17-18), T is also uniquely determined outside the
surface of the sphere (O, Rg). Due to the relation (2.73) between the radial derivative of
Hotine's kernel and the kernel of Poisson, the condition (3.67) may also be replaced by
the equivalent set of conditions:

2 2 ’r A
RsD§(Rs, 6, ) = Rr®§-Ry | f RrDr®. A7) do (a)

4n ng

(3.68)

R%ZIE j J D5(8’, A’ )do = R%ZIE I f D5(6°, A Yo (b)

c

Note that (3.68a) by itself is equivalent to a condition similar to (3.67), but with its right-
hand side equal to a constant. Condition (3.68b) enforces such constant to be zero. The
condition (3.67) (or equivalently the set of conditions (3.68a, b)) would have been
fulfilled as an identity, if the measurements D} and D§ were free of errors. In the
presence of observational noise however, to enforce a unique solution to the over-
determined bvp, one could use either (3.67) or (3.68a, b) and set up a least-squares
adjustment of the form F(Lg) = 0 (condition equations), for Df and D§. The result of this
adjustment would be a set of f)r and ﬁs which would fulfil the compatibility condition
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and would be accompanied by a-posteriori estimates of their error properties. The
a-posteriori errors of Dr could then be used in the truncation theory formulation of the
previous section, to estimate the error of geopotential (T) or geopotential difference (AT).
In this manner the additional information provided by the measurements at altitude, for
the estimation of T or AT on the Earth's surface, can be taken into account. However,
the above procedure requires the measurements ﬁr and ADs to provide global coverage, so
that (a discretized form of) (3.67) or (3.68) can be used to set up the condition equations.
The problem at hand however, is of local nature. Terrestrial measurements are given in
the caps centered at the computation points A and B, while the measurements at altitude
are given in the caps centered at SA and Sp as illustrated in Figure 10.

Mean sphere of satellite
observations (r = Ry)
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Figure 10. Geometry of the Measurement and Estimation Points.
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One way to circumvent the inability to use integral formulas for downward

continuation, is to perform the error analysis in two steps:

(@  Using the altitude generalized truncation coefficients derived in Appendix A, one
can estimate the error eATSISB of ATs,s; when the latter is estimated from
terrestrial measurements via upward continuation (Pizzetti's extension of Hotine's

integral). This error may then be compared to the corresponding error eATSSAsB

obtained when ATs,s; is estimated from the measurements at altitude.

(b) Significant contribution of the observations at altitude to the accuracy of ATap is
provided when eATsISB > eATsSAsB. To quantify this contribution one may use
least-squares collocation where the signal to be predicted is ATap and the two

independent input signals are: ATs,s; obtained from data at altitude and ATap

obtained from terrestrial measurements, each input signal accompanied by the
corresponding error as obtained from truncation theory.

Obviously the motivation for using the above procedure is to take advantage of the
simplicity of error propagation through truncation theory on one hand, and of the "built-
in" ability of least-squares collocation to perform the downward continuation (Moritz,
1980, p. 97) on the other. However, as it will be shown next, these properties may be
exploited in a more efficient way, if least-squares collocation with "ring-averages" is used
for the error analysis. In such case all measurements are used simultaneously in the error
analysis and the error estimate €ATAp is obtained in one step.

3.3 Least-Squares Collocation Using Ring Averages

Consider the observations in the caps centered at A, SA (see Figure 10) arranged
in the vector da and similarly those in the caps centered at B, Sp in the vector dg. These
observations consist of a signal part denoted z and a noise part denoted n, so that
(Colombo, 1980):

da=za+na (a) \\

bemim O 36
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The signal to be estimated from the data da and dg is the geopotential difference ATag. A
linear estimate of this signal has the general form:

ATap = 1d (3.70)
where:
da
d=|---
ds ' (3.71)
and the estimator f can always be considered as composed of two parts:
-fa
f=| ... .
fs (3.72)

Hence, the estimate ATp becomes:

ATap = fhdp - fAda (3.73)
and its error is given by:

eATap = (Ts - Ta) - (ff dn - £1da) - 3.74)

Applying the total averaging operator E (Moritz, 1980, p. 100) to the square of the
estimation error one has:

B(eATanf] = H(Ts - TaR + £f dodlfs + £1dadlfa - ATs - Ta)ifs

+2(Tg - Ta)dAfa - 2fIdAdng] . (3.75)

Assuming no correlation between signals and noise, i.e.

E(Tn") =Elzn") =0 . (3.76)
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and denoting:
M(TT) =Crr (@)
M(TZ") =Cr, ()
M@zzh) =Cy © 3.77)
E@nD=D (d)

one has from equation (3.75):

E[(eA?AB)Z] =2CrT (A, A)- 2Cr7 (A, B) + fi[CAB, B) + D(B, B)lfs
+{1[C.AA, A) +D(A, A)lfa - 2[Cr4B, B) - Cr4A, B)lfg
+2[CrdB, A) - CrdA, Allfa - 26C{A, B) +D(A, B)lfs (3 73,

From all possible choices of linear estimators f one seeks now such an f that minimizes

f{(eA"I\‘AB)Z] Imposing the conditions:

3 (. x 9 H(ea
%Eﬂ(uma)z] = %E H(eaTu)] =0 (3.79)

one arrives, due to (3.78), to the following linear system of equations in fA and fg:
fl[C.4A, A) +D(A, A)] - f{C.AA, B) +D(A, B)] + CrB, A) - CrdA, A)=0

-fIC.4A, B) + D(A, B)] + fi{C,(B, B) +D(B, B)]- Cr4B, B) + Cr4A, B)=0
(3.80)

The following assumptions are now made: the observations da and dg have the
same configuration and are characterized by the same error properties. In addition, no
correlation exists between the noise na and ng. If one seeks an estimate of AT g which
should not be significantly biased towards either endpoint of the baseline AB, it is
reasonable to require that at both endpoints A and B, the available measurements have
similar configuration and error properties. Hence, the above assumptions are not
unrealistic from the practical point of view. Under these assumptions one has:
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CA, A)= C.{B, B) (a)\
CrAA, A)=Cr{B, B) b)
CrdA, B)=Cr{B, A) © ; (3.81)
D(A, A) =D(B, B) @
D(A,B)=0 )

and the solution of the system (3.80) can easily be found to be:
fa=1s (3.82)
fa = [Cz(A, A) - Czz(A, B) +D(A, A)))[Cr, (A, A) - Cr, (A, B)] . (3.83)

Substituting (3.81) - (3.83) in (3.78) one finds that under the previous assumptions the
global mean square error of A?AB is given by:

H(eaTasf] = 4Crr(A, 4)- Crra, B) - UTT U] (3.84)
where the vector U and the matrix C are given by:

U=C[(A, A)- CL{A, B) (a)\
|

C=Cz{A, A)- C{A, B)+D(A, A) (b) (3.85)

Although the symmetry assumptions (3.81) significantly simplify the computation
of the global mean square error of A"f‘AB, the formation of the covariance matrix C in
(3.85b) requires computational effort proportional to the square of its dimension which is
equal to the number of observations. The formation of C, as well as its inversion, can be
a very demanding computational process. On the other hand, as it was shown in section
3.1, the isotropy of Hotine's kernel in conjunction with the suitable selection of the (y,
o) gnd to ;ég?iistferi the cap data, resulted in very efficient formulas for the computation of
A"f'AB as well as its error, in the case of the uniquely determined bvp and the integral
formula approach. In that case, as it was shown in equation (3.64), the cap contribution
to A?‘,AB was given as a weighted sum of ring-average "observations”. It is thus
appropriate to consider the simplifications of equations (3.835a, b) if instead of the
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original measurements, ring-averages are to be used in the least-squares collocation
estimator. Obviously, in such case the number of "measurements” reduces drastically
and this brings significant savings in the formation of the covariance matrices (Colombo,
1980). To follow this approach the analytical expressions for the covariances between
ring-average "measurements” have to be developed first. This is done next.

A=Aq
Figure 11. Geometry Associated with Ring-Averages.

Let t and s be two gravimetric quantities. The homogeneous and isotropic
covariance between t and s (both considered as point values) may be expressed as:

cov(tp, sg)=M(tp sg) = Z Os(n)Pr(cosypr)
n=o (3.86)
where the averaging operator M was defined in (3.52) and os(n) (n = 0,1,2...) is the
power cross-spectrum of t and s (i.e., Gis(n) is the global average under M of the
products of the surface harmonics ta(8, A) times sp(5, A)). The ring-average of the
quantity s is defined as (Jekeli, 1989):

n

S(wer) = 5% f s(Wqr, 0QrR)doGQR
: Cgr=0 : (3.87)
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where the notation can be read from Figure 11. The covariance between the point value
tp and the ring-average value S(yqg) is given by:

covtp, {yqr])] N{Pi-f s(WQR» OQR) d“QR]

2%

o

Thus the required covariance is the average over the azimuth agg of the covariance
between tp and sg, where the point R now moves on a circle of semi-aperature Yqg,

centered at Q. Substituting (3.86) in (3.88) one has:

2n
covtp, S(yqr)] = [ > O:s(n)] P, (COSWPR)daQR]
(3.89)

where ypr depends on ypg, Wor and oqp (which are constant), as well as on the variable
azimuth agr. From the decomposition formula (Heiskanen and Moritz, 1967, equation

1-82) one has:
Py (cosypr) = Pr(cosyqp)Pn (cosygr) +

+ 22 (n + m)' M(\VQP7 aQP)an(WQR, aQR) +
+ Sam(WQP, 0QP)Snm(WQR, OQR)] (3.90)

where Rym and Spm are defined in (ibid, equation 1-67). The integral in (3.89) can be

written as:

2n
I Py(cosypr) cos{0.0qr) dogr
° 3.91)

so that upon replacing in (3.91) the expression (3.90) for Py(cosypr), due to the
orthogonality of sines and cosines in the interval [0, 27], one has:
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2
I Pr(cosypr) dogr = 21t Pr(cosypq) Pr(cosygr)

(3.92)
and (3.89) finally becomes:
covtp, S{Wqr)] = Z G1o{n)Pr(cosYQrIPr{cOsYPQ) - (3.93)

Following similar lines, the covariance between two ring-average values t(ypy) (where
Ypy is the semi-aperture of a ring centered at P) and §(WgRr) can easily be found to be:

cov [t(yev), S(Wer)] =,§a O1o(n)Pr(cosypy)Pr{cosYQRIPn(cosYpQ) 394

The general expressions (3.93) and (3.94) can now be specialized for the current
application. If d, denotes the degree variance of the point value of gravity disturbance
(more precisely of -0T/dr), referring to the surface of a sphere of radius R = 6371 km and

SE denotes ring-average value of gravity disturbance, then (see also section 3.4):

S IR TS YR

Cr5(P, QR)= 2 (n £ ,.(rPrQ)" Polcosyar)Pr(cosyrg) ) [ (3.95)

had +2
Co,5(PV-QR)= 3, o B f prlcosyriPulcosyanPulcosire) @)
n=2

Note that the summations in (3.95) start from n = 2, i.e., it is assumed that the disturbing
potential does not include zeroeth- and first-degree harmonics.

It should be emphasized here that equations (3.93) through (3.95) refer to rings
formed by point measurements and not to zones of arca-mean values in equiangular
compartments as it was the case in equation (3.64). The case of zone rings is
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considerably more complicated, because it requires the use of covariances between area-

mean values as discussed by Colombo (1981a, section 4). For the small size
compartments (e.g., Ay = 2') that will be considered in the next chapter, the difference

between the case of rings formed by point measurements and zone rings will be
neglected.

Based on the above formulation, it is now possible to examine the particular form
that the covariance matrices in (3.85) take, in case ring-average values are used for the
estimation of ATag. The following notation is introduced:

y{: semi-aperture of terrestrial cap
y3: semi-aperture of cap at altitude
AyT: spacing between rings in the terrestrial caps

Ay®: spacing between rings in the caps at altitude

W4 = WaB: angular separation between stations A and B
R(= 6371 km): mean-Earth radius
h: average altitude of satellite observations

Rs =R + h: radius of average sphere where satellite observations refer.

According to the above, the number of rings in each terrestrial cap is:

T
NT= %’r +1
Ay (3.96)

and similarly in each cap at altitude:

NS = ¥o

r=— +1
Ay® (3.97)

so that the total number of rings at each site (A or B) is:

N,=NF +N§ . . (3.98)
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Accordingly, the square symmetric matrix:

C=Cg(A, A)- Cz(A,B) 3.99)

appearing in (3.85b), can be arranged as shown in Figure 12, after the observations on
the Earth and at altitude are collected in two separate groups.

NT NS —
b
C11 Ci12 u;
NT
vt 1 el
22

s 1 u2
N I
} 1

Figure 12. Structure of Covariance Matrix C = Cp(A, A) - Czz(A, B), and Vector U of
Equation (3.85).

Abbreviating by Py(i) the Legendre polynomial Py(cosy), where v; is the spherical
distance from a cap center to the i-th ring around it, one can easily see that due to the
equation (3.95c), the elements of C are given by:

Culi, j)= 2 d,P n(i)Pn(jIl -P n(\Vd)] (a)\\

n=2
.. - +2 . .
Cidi, j) = ,§2 dn(%)n Po(i)PA(] 1 - Pn(Wa)] (b) (3.100)

Codlinj)= 3, d»{g)”*zpnﬁmn Bl ©)
S

n=2
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while, due to (3.95b), the elements of vector U are given by:

ufi)= 3 SRRl -Palval] @

. . +2. /.
wli)= 3, TRIGE TRl - Pl ) 100

Obviously in equations (3.100) and (3.101), Py(yq), is used to abbreviate Py(cosyg). In
addition ;j is given by:

- 1AyT (terrestrial data)
' (i- DAyS (data at altitude) . (3.102)

Finally, the a-priori error variance of the difference ATap (i.e., the error variance before
the introduction of the measurements), is twice the quantity:

Crr(A, A) - Crr(A, B) = ¥ [-B—*d,[1 - P, ,
™ B Zi(“”}z oLl (3.103)

as it can be easily deduced from (3.95a).

The last matrix which needs to be defined so that equation (3.84) can be evaluated,
is the noise covariance matrix D(A, A) appearing in (3.85b). Assuming no correlation
between the errors of the terrestrial data and the data at altitude, matrix D(A, A) will be
block diagonal with one block having dimension NT while the other N§. If of and of, are
the degi'ee variances of the error of a point gravity disturbance measurement on the
Earth’s surface and at altitude respectively, then the element d(i,j) of D(A, A)
representing the error correlation between the i-th and j-th ring-average value is given by:

dGj=Y Pn(i)Pn(j){ 0’,’,‘} | (terrestrial data)

: n=2 (data at altitude) . (3.104)

n
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The above formulation for Isc using ring-averages treats the general case where

observations on the surface of the Earth and at altitude are used simultaneously for the

estimation of ATap. The problem of estimating ATap from either group of data alone,

can easily be treated by forming only the pertinent part of the matrices and vectors
previously defined.

3.4 Covariance Models for Signal and Noise

» The implementation of the formulation given in sections 3.1 and 3.3, for the
estimation of the global mean square error of the disturbing potential differences, requires
appropriate covariance models to be established that describe, in a global average sense, the
properties of the gravitational signal and the noise contained in the measurements. The
various covariance models considered for this purpose are discussed next.

3.4.1 Global Covariance Models for the Gravity Anomaly

It is well known (Moritz, 1972) that a global covariance model for the gravity
anomaly carries equivalent information with a corresponding model for the disturbing
potential. Hence, covariance models for the gravity anomaly will be considered next, and
the analytical relations will be given to derive the corresponding models for the disturbing
potential or other linear functionals of it (e.g. the gravity disturbance). The spherical
harmonic expansion of the disturbing potential is written as:

16 0,1) =M 5, (& 3 ConFonle, 1)
r R (3.105)

where the notation is consistent with that used in equation (2.52). In an equivalent form
(3.105) may be written as:

T(r, 0,1) = GM 3" (@)1 Y Ty ¥un(6, A)
n=2 m=-n (3.106)

Consistent with the form (3.106), the spherical harmonic expansion of the gravity
anomaly is;
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gl 0,1)= G T D(E2 3, CunTunle, 2)

n=2 (3.107)
and of the gravity disturbance:
5¢lr, 0,1)=GM " (n + 1)(8)*2 i Com Yourl, 1)
az 5 m=-n (3.108)

The following values will be adopted here for the scaling factor "a" and the geocentric
gravitational constant GM in the above and in the following equations:

a=6378137. m
GM = 3986004.36 x 108 m3/s2 (3.109)

The surface spherical harmonic of the disturbing potential, referring to the surface of the
sphere of radius:

r=R=6371000. m (3.110)

is given by:
T =R,e,k.=.T=§1Mﬂ~“+‘n Com Ym0, A
e )= T a (R) ngfnc“m (0. 2) (3.111)

while from (3.107) and (3.108) it can be easily seen that the corresponding surface
harmonics of Ag and dg are:

= = =n_-1‘
Agn(r R, 9, l) Agn R Ty (3.112)

= = =M1'
Sgalr =R, 0,A)=8g, =L T, (3.113)

The degree variances (Heiskanen and Moritz, 1967, p. 259) of T, Ag and &g, referring to
the surface of the sphere of radius R, are given by:



Ky =M(T2) = (ﬁ;ﬂ)z(ﬁé ‘;E’ﬁu
Cp= M(Ag,zl) = (ni_l')zkn

dp =M(5gl) = (ke

100
(a)

(b) (3.114)

(©

The spatial covariance function of the disturbing potential is given by (Moritz, 1972,

equation 7-26):

K(P, Q)= ) kn (;P‘%) nHPn(cos vrQ)

n=2

(3.115)

while, due to the law of propagation of covariances (ibid, p. 97), the corresponding

covariance functions of Ag and &g are:

qap,Q)= ), cn(rl;r%rﬂPn(cos VrQ)

n=2

and:

Q-3 B2 Pafeos vio)

In the notation of section 3.3 one has:
Crr(P, Q=K(P, Q)

Csg,54(P» Q) =D(P, Q) ,

while by the law of propagation of covariance:

(3.116)

(3.117)

(3.118)

(3.119)
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Cr.s4P, Q) =- ariqtcﬂ (P, Q)

+2
= Z (n +1 “(rPrQ Pn(COS ‘IIPQ) (3.120)

Based on equations (3.115) through (3.120), all covariances needed in section 3.3
can be defined. Due to the relations (3.114), a model for ¢y, is necessary and sufficient to
enable the evaluation of all the above covariances. Up to a certain maximum degree Npyax
(which at present equals 360), the anomaly degree variances ¢, may be obtained from the
harmonic coefficients of the disturbing potential, estimated by combining a lower-degree
set of satellite-derived harmonics with the harmonics implied by a global set of gravity
anomalies. A state-of-the-art global geopotential solution of this kind is the OSU89B
model (Rapp and Pavlis, 1990), which is complete to degree and order 360. Hence, up to
Nmax = 360, ¢, may be defined by:

= GM - _33 25 2 -2
(a2 )2(" I)Z(R2 mchnm » 2sns360 (3.121)

where Cpm are the fully-normalized unitless spherical harmonic coefficients of the
OSU89B model (even zonals are remainders after removing the ellipsoidal reference
values). Since the disturbing potential is not band-limited to Nmax = 360, one needs to
adopt a model that provides the anomaly degree variances above this degree. The
analytical form of degree variance models developed for this purpose, is usually selected
in such a way that enables closed expressions to be derived that provide the covariance
between various gravimetric quantities, facilitating in this manner the practical
implementation of these models (Tscherning and Rapp, 1974). The parameters of these
models are then estimated in a least-squares adjustment where "observed” degree variances
are in essence the values given by (3.121) from the analysis of satelhte and terrestrial data.
In the following discussion two such models are considered, both of the same analytical
form (ibid, 1974):

n-1
Cp = sn2 . n>2
" (n-2)fn+B) (3.122)
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where A, B and s are parameters of the model; s is the ratio:
_Rg
R? (3.123)

S

where Ry is the radius of the embedded (Bjerhammar) sphere. The first set of parameters
(A, B, s) are those estimated by Tscherning and Rapp (ibid, p. 22) so that the model
(3.122) is given by:

c(zl) = 7.5 mgal?

) 42528(n-1)
2 - 2)n +24)

3.124
(0.999617)™2 mgal>? ; n>2 ( )

The second set of parameters (A, B, s) was estimated by Jekeli (1978) and imply the
model:

0(22) =7.5 mgal?

d2) - 343:3408(n - 1) g908061)12 mgal2 ; n>2
V=T 2+ 28) y" mg . (3.125)

In Figure 13, the anomaly degree variances implied by the OSU89B model (to
Nmax = 360) and by the models c¢@G = 1, 2) above, are shown. For comparison
purposes, the anomaly degree variances implied by Kaula’s rule of thumb are also shown.
These were computed by (Rapp and Pavlis, 1990):

k)~ _192 2
o s e (3.126)

Note that expressions (3.121), (3.124) - (3.126), all provide the degree variances
referring to the surface of the sphere of radius R = 6371 km. As it can be seen from
Figure 13, from the three models c(,li), c(rll), c(%) the model c(,zl) implies the fastest decay of
the gravity anomaly spectrum at the higher degrees. In addition, one observes a very good
agreement between the model ¢ and the ("observed") degree variances implied by
OSU89B in the range 180 < n < 360. Although the spectral properties of the disturbing_
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potential above degree 360 are to a large extent a matter of assumption, due to the lack of
detailed data on a global basis, the overall performance of a degree variance model may be
judged by comparing the variance of certain gravimetric quantities, as implied by the
model, to corresponding values obtained from the analysis of available measurements.
For this purpose, the variance of the (point) gravity anomaly Co, and the variance of the
horizontal gradient of the gravity anomaly Gog are often used (Moritz, 1980, section 22).
Jekeli (1978) has shown that:

-1
Gow =3 !‘2;3 €n (3.127)

where the degree variance of the vertical gradient, gy is:

g = (aAg) _(n+2p e

ar R2 (3.128)
To calculate Cg and Gog, four models for c,, are considered as follows:
cn(A)=d}) \
cB)= c&z)
e{C) = cn(OSUB9B) 2<n<360 (3.129)
cg) 360<n<eco
cyD) = c,(OSU89B) 2<n<360
! c£,2) 360 <n<eo }

Using these models and approximating infinity by n = 36000, Co and Goy have been
evaluated. The values obtained are given in Table 4.
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Table 4. Gravity Anomaly (Cp) and Horizontal Anomaly Gradient (Ggy) Variances,
Implied by Different Anomaly Degree Variance Models.

Model | Co(mgal2) | Gou(E.U.2)
A 1795.0 3542.2
B 1106.0 339.3
C 1437.9 3533.2
D 1035.8 339.3

Based on extensive analysis of gravity anomalies implied by satellite altimetry, as well as
of terrestrial measurements, Rapp (1985) suggested 1100 mgal2 as an estimate for Cy.
The value of Goy is much more difficult to estimate, since the horizontal gradient is a
signal of high-frequency content and the detailed data necessary for its determination are
not currently available on a global basis. A value of 300 EU? (1 Eotvés Unit (EU) =
0.1 mgal/km = 10 5-2) for Ggy is a compromise between various estimates obtained from
regional data analyses (Robbins, 1985). Based on these considerations, the composite
model c(D) defined in (3.129), will be used in the numerical analysis to be presented in
the next chapter.

3.4.2 Covariance Models for the Measurement Noise

The estimation of realistic error properties for the data poses an even more difficult
problem than the estimation of the global properties of the gravitational signal contained in
them. Provided multiple independent samples of the measurements are available, one may
estimate an empirical error covariance function for the data by analyzing the differences
between different samples, as it was done by Weber and Wenzel (1982) for the gravity
anomaly data in Europe. In the absence of multiple independent measurements for an
observable, one usually employs an analytical error covariance model to describe its error
properties. The variance and the correlation length of such a model are assigned values
which are representative of the measurement process under consideration. In the
following, three such error covariance models are considered.
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Model 1 : Dirac Impulse

The error covariance function here is given by:
oy)=cDy) ; ¢>0 (3.130)

where the Dirac impulse (or delta function), D(y), is defined on the unit sphere by Jekeli
(1981):

Zlft_jf ]X\pr) f(ep, lp) do =f(9Q, lQ)
. (3.131)

For the isotropic error covariance models that will be considered here, the n® -degree
variance Oy, is given in general by:

n
On = 29—;4 I o(y) Py(cosy)sinydy
v=0 (3.132)

This equation yields for the model 6()(y), due to (3.130) and (3.131):

osll)=(2n+ e  ; n20 (3.133)

which implies that the rms amplitude by degree of the error is constant, equal to cl2, for
any degree n. This property is the spherical counterpart of the corresponding spectral
property of the delta function, 8(x), defined on the real line -eo < x < e whose Fourier

transform is one (Papoulis, 1962, p. 36).

The model o(1)(y), as it can be seen from (3.130) and (3.133), implies infinite
variance and zero correlation length. In practical applications, where one is always
considering a finite number of observations (point values or area-means), the assumption
that observation errors are uncorrelated and that all observations have the same error
variance, is often employed. However, as seen from the above, such assumptions, when
extended to the case of infinite number of point measurements covering the entire sphere,
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lead to unrealistic spectral properties of the noise. For this reason alternative error
covariance models are considered next, which do not suffer from such disadvantages.

Model 2 : Gauss-Markov First-Order
The error covariance function here is given by (Rummel, 1980, p. 44):
oy)=cetv ; ¢>0, A>0 . (3.134)
The parameters c, A are related to the variance (m3) and the correlation length (<) by:
c=m} (2)

(3.135)
A=-Lfn2 b
Ve ®)

The degree variances corresponding to o(2)(y) can be obtained from the following

recurrence relation:
2l M+0-2P @) o,
n - n- 4
-3 A4+ 1p (3.136)
with starting values:
d2=¢ J_c__ (a)
2 3241
(3.137)
012) 3c l_L_ (b)
2 A2+ 4

The detailed derivation of this recurrence is given in Appendix C. In case one postulates
the absence of zeroeth- and first-degree harmonics from o(2)(y), the resulting covariance

model is given by:

o(Xy)=clew- _LlTe__ _11_c_cos\|,
AT+ 1 y (3.138)
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Given the correlation length ¢, the parameter A for this model can be determined by

solving iteratively the equation:

1_26-1.\41‘+J2_ 142-6‘“‘ + _% 1;e"”':(2cosx|1°-l)=0
2241 A2 +4 (3.139)

with initial value for A, the one given in (3.135b). The parameter ¢ can then be
determined, given the variance m2, by:

comgll. L Leet 3 1-eMl
2 9201 23244 (3.140)

Obviously, the degree variances 3&2) are identical to o(nz) for n 2 2, while
s@=5P=0
V] 1 .

Model 3: Reciprocal Distance

The error covariance function here is given by:

2)-1/2

6(3X\|I}=c(1-k)(l-2kcosw+l : ¢>0,0<Ai<1 . (3.141)

Considering the notation of Figure 3, it can be easily seen that 6®)(y) can be written in the
form:

dWw=v%3 , (3.142)

where:

-R
-y (2)
(3.143)

1
L=T1 (1 - 2Acosy + )\.2) h v (b)
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and the form (3.142) explains the characterization "reciprocal distance”. Given the
variance m and the correlation length Y&, it is easy to see that the parameter c is given by:

c=m§ |, (3.144)
while A is obtained after solving iteratively the equation:

(1 - 2hkcosyC +A2)12-2(1-2) =0 (3.145)
with initial value for A given by:

©_q. Y
A7 =1-92sin > . (3.146)

The degree variances o{? ) are given by the closed form expression (Sjoberg and Fan,
1986):

oP=d1-ap" . (3.147)

The assumption of absence of zeroeth- and first-degree harmonics from o0 )(w), yields the
model (ibid, 1986):

0%y = 1 - W) - 2hcosy + 272 1 - Acosy] (3.148)

The parameter A for the model o )(\v) is obtained by solving iteratively the equation:

2)- 1

2(1 -7\.)[(1 -ZKCOSWC+)\. -1 -XCOS\VC] -12=0 ’ (3.149)

given y<, and using as initial value for A the one given in (3.146). Once A has been

determined, c is given by:

c=mgA2 . (3.150)
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Again, &) = o) for n 2 2, while 63 =o{) = 0.

In order to demonstrate the different characteristics of the models
5(2)(\|l) and_5(3)(\y), the parameters ¢ and A of these models were evaluated for a given
value of the variance m3 (taken here to be mj = 1 mgal?) and different choices of the
correlation length y¢ (taken as 0°1, 0°2 and 0°5). The results are given in Table 5. For
the model 3(3)(\|!) the radial distance r to the external point P (see Figure 3) from which the

distance £ is reckoned is also given. The radius R in this case (see equation 3.142) was
taken to be 6371 km.

Table 5. Parameters Associated with the Error Covariance Models 6t?y) and o©*Y), for
m3 = 1 mgal? and y¢ =0°1, 0°2 and 0°5.

Model | ye 0°1 0°2 0°5
@y A | 0.397136814873D+03 | 0.198557509013D+03 | 0.793924826289D+02
¢ | 1.000012680788 1.000050727516 1.000317237947
A | 0.998990129118 0997975830838 0.994906095858
oChy) ¢ | 1.002022805406 1.004060663364 1.010266183954
r(m) 6377440.4 6383922.1 6403619.4

As expected, for a given value of the variance m3, increase of the correlation length ¢
causes decrease of the parameter A for both models 3(2)(\p) andam(w} (see equations
3.135b and 3.146). As W€ increases, more power of the error spectrum is shifted to the
lower degree harmonics, as it is illustrated in Figures 14a and 14b where the degree
variances 62} and 5{3) are plotted for y¢ = 0°1 and y© = 0°2 respectively. For the
reciprocal distance model '6(3)(\41), increase of Y€ corresponds also to increase of the radial
distance 1, as it can be seen from Table 5.
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CHAPTER IV
NUMERICAL ANALYSIS

Based on the formulation given in Chapters II and III, a number of numerical
experiments were performed in order to assess the accuracy of geopotential differences
estimated from the gravimetric information contained in a global spherical harmonic
expansion and in the gravity disturbance data in the terrestrial and at altitude caps. The
results of these computations are presented in order of increased complexity of the
estimation scheme employed, starting with the geopotential differences estimated on the
basis of a global geopotential model alone and concluding with the addition of gravity
disturbance data on the surface of the Earth as well as at altitude.

4.1 Disturbing Potential Difference Estimated from Current and Future
Global Geopotential Solutions Only

Three global geopotential solutions are considered here. These are designated:

(a) OSU89B
(b) TOPEX
© GPB

(a) OSU89B (Rapp and Pavlis, 1990) represents a state-of-the-art high-degree global
model, available in the absence of the missions discussed in section 1.3. The estimated
anomaly error degree variances associated with this model are shown in Figure 13. A
number of comparisons with independent data reported by Rapp and Pavlis (ibid), indicate
that the error estimates of the coefficients do provide a realistic assessment of the quality of
the model. As it can be seen from Figure 13 the spectrum of the anomaly error starts
exceeding the spectrum of the anomaly signal around degree 250. As the degree of the
coefficients increases, validation of their error estimates becomes more difficult because
precise independent information is not available on a global basis with high enough

112
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resolution to enable comparisons. In ocean areas comparisons with GEOSAT-implied
undulations indicated that, although the signal sinks below the noise above degree 250, the
coefficients above this degree do contain meaningful information (ibid, p. 21,903, Table
9). In this study for the implementation of least-squares collocation, the OSU89B
coefficients above degree Nmax = 250 will not be admitted as part of a reference model,
with the understanding that the pessimistic error estimates above this degree may be due to
shortcomings in the error assessment of the model, induced by factors such as the neglect
of correlations between the 30' x 30' mean anomalies used in its development. Such
neglect is at present necessitated by the inability to computationally handle a more
appropriate error modeling for the 259200 mean anomalies involved in the model's
development.

(b) TOPEX represents the geopotential model that is anticipated to become available from
the analysis of the GPS tracking data alone on the TOPEX/Poseidon altimeter satellite
(Pavlis, E., et. al., 1990). Such a model will extend to degree 50 and its expected errors
were estimated in a simulation study where the GPS tracking data were used in a dynamic
solution for the estimation of the geopotenﬁal spectrum, satellite orbital parameters as well
as parameters related to air-drag etc. (ibid, 1990).

(c) GPB represents the geopotential model anticipated to become available from the
analysis of the GPS tracking data on Gravity Probe-B spacecraft. The model from such a
mission will extend to degree 55, and the expected errors of its coefficients were obtained
in the simulation study by Pavlis, E., et. al. (ibid) in a similar manner as for TOPEX.

The error anomaly degree variances for OSU89B (2 < n < 60), TOPEX and GPB
are shown in Figure 15, along with the (signal) anomaly degree variances implied by
OSU89B (2 Sn < 60). As it can be seen from this figure, TOPEX is expected to improve
the current knowledge of the spectrum at degree 10 by about 3 orders of magnitude while
the improvement for GPB at the same degree is by about 4 orders of magnitude.
However, since TOPEX and GPB models lack the detailed terrestrial (and altimetry-
implied) gravity information included in OSU89B, their error spectra yield poorer values
than the error spectrum of OSU89B, after degrees ~ 25 and ~ 45 respectively.
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Figure 15. Anomaly Degree Variances for OSU89B and Error Anomaly Degree Variances
for OSU89B, TOPEX and GPB.

Since the information based on which TOPEX and GPB are developed is
independent of the information used to develop OSU89B, one can safely assume that if
OSUS89B is combined (in a least-squares sense) with either of the two models, the
resulting solution will perform at least as good as the best of the contributing solutions
performs at any given degree. In that sense, the error spectrum of a combined solution of
the type TOPEX/OSU89B may be approximated by the error spectrum of TOPEX up to
degree 25 and the error spectrum of OSU89B from 26 to 360. Similarly, a combined
GPB/OSUS89B model's error spectrum can be approximated by the error spectrum of GPB
up to degree 45 and the error spectrum of OSU89B from 46 to 360. Based on these
considerations, the total (commission plus omission) error in geopotential (yg = 0°) and
geopotential difference, implied by the above models, truncated at various degrees was
computed using equations (3.53), (3.54) and (3.55). The results are given in Table 6. In
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all numerical results to be presented hereon the radius of the reference sphere to which the
estimated errors refer is R = 6371 km, and the model c,(D) of section 3.4.1 is used to
represent the "true” spectrum of the gravity anomaly.

Table 6. Geopotential and Geopotential Difference Errors from Current and Future
Global Spherical Harmonic Models.

€AT (kgal cm)

Model | Nmax |y3=0" | 2 ¥ 10° 3P 180°
OSU89B 25 207.7 242.2 311.0 291.6 294.0 290.7
(89B) 45 154.6 | 2139 223.0 221.7 217.9 217.1
250 60.6 77.0 85.1 86.2 85.6 85.9
TOPEX 25 206.8 242.1 310.5 290.2 292.7 289.4
(M) 50 161.3 217.4 236.4 228.0 228.5 228.9
GPB 25 206.6 | 242.0 310.3 289.8 292.5 289.0
(G) 50 142.5 205.5 202.1 205.6 202.1 203.0
T/89B 25/250 | 57.4 76.5 83.0 81.2 81.1 81.2
G/89B | 45/250 | 52.2 74.2 74.7 73.9 73.8 73.8

As it can be seen from Table 6, the current knowledge of the geopotential spectrum
implies absolute geopotential values (yq = 0°) accurate to about 61 kgal cm, while for
station separation yg = 10° (~1110 km) the error in AT is about 86 kgal cm. The future
models alone, (i.e. Nmax = 50), despite the great improvements they promise for the very
low-degree harmonics, fail to achieve the accuracy obtainable by the currently available
high-degree expansion OSU89B, due to the large omission error above the maximum
degree that these models can resolve. However, when the high accuracy long-wavelength
information provided by GPB, is augmented by the shorter-wavelength information
contained in the high-degree model, an improvement by about 14% over the attainable
accuracies using OSU89B alone (up to Npax = 250), is achieved. The corresponding
improvement for the combination TOPEX/OSU89B is substantially lower (about 5%) as it
is expected (see Figure 15). Apart of the higher accuracies achievable by the combination
GPB/OSUS89B, an additional factor that makes this combination preferable over the
TOPEX/OSU89B, is that the higher resolution of GPB enables better control over the
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systematic errors in the combined solution, caused by the errors in the gravity anomalies
(used in the development of OSU89B), arising from vertical datum inconsistencies. As
mentioned in section 1.1, Laskowski's (1983) study indicated that such errors are likely to
contaminate the geopotential's spectrum up to maximum degree about 60.

4.2 Introduction of Terrestrial Gravity Disturbance Measurements

The estimation scheme of the previous section, whereby the geopotential
differences were obtained on the basis of the global information contained in a geopotential
model only, is now augmented by introducing detailed local gravimetric information in the
form of gravity disturbances inside the caps surrounding the computation points. The
characteristics and sensitivities of this estimation scheme are considerably more
complicated to assess, than of the scheme of section 4.1, because here a number of inter-
related factors affect the quality of the final result. Hence, to examine the individual
contribution and importance of different aspects of the observation/estimation setup to the
quality of the results, the following discussion is divided into three parts, addressing the
choice of cap integration kernel, the cap size and data density, and the data accuracy
respectively. In addition, since the error estimation of the observational setup considered
here, can be performed using either truncation theory principles or least-squares
collocation, a comparison of the etror estimates obtained by each technique is also given in

section 4.2.4.
4.2.1 The Choice of Cap Integration Kernel

The two integration kernels Hi(y) (unmodified Hotine) and Ha(y) (Meissl's
modification) are examined here. The propagated errors in geopotential (yq = 0°) and

geopotential difference implied by the use of these kernels are given on Table 7, for two
cap sizes (\yE = 2°, 4°) and two choices of reference geopotential model (OSU89B and the

combination GPB to degree 45 augmented by OSU89B from 46 to 250).
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Table 7. Geopotential and Geopotential Difference Errors Implied by Different Choices of
Cap Integration Kernel. (All Errors are in kgal cm).

OSU89B GPB/OSU89B

v | w Hi(y) Ha(y) Hi(y) Ha(y)
* 19.4 19.8 16.7 8.7
X it 244 24.3 22.6 12.6
10° 27.2 28.5 234 12.1
xr 27.5 28.0 23.6 12.3
* 18.6 14.0 16.3 10.0
' 3 g 23.5 15.5 19.9 12.7
10° 24.8 19.2 21.8 13.6
r 26.3 19.8 23.1 14.1

vl terrestrial cap size

Y4 : angular separation between stations

AyT =4

Gravity Disturbance Error : 6CXy); mo =2 mgal, y¢ = 0°1
Nmax = 250

In the evaluation of the errors given in Table 7 (as well as in all subsequent
applications of truncation theory) the sampling error spectrum sp, which was introduced
but not specified in equation (3.51a), was evaluated from the quartic expression developed
by C. Jekeli based on numerical experiments performed by Colombo (1981a, equation
3.10), i.e.

a = ) dn | 4.1)

where:

(8-t 16y wsud(@)rwmpRF

and N is the Nyquist frequency implied by the sampling interval (equation 3.21), while dj
is the signal degree variance of the gravity disturbance.

Examining now the results shown in Table 7, the following comments can be made:
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1. By comparing the results for the case of OSU89B and the two different cap sizes it can
be seen that the kernel modification yields improved accuracy estimates by about 25% for
the larger cap size (4°), but degrades slightly the results for the smaller cap size. In
contrast, in the case of the combined model GPB/OSU89B, the kernel modification yields
a substantial (~ 48%) reduction of the error for the smaller cap size and a less pronounced
(~ 39%) for the larger one. This is due to the fact that Meissl's modification, in its attempt
to accelerate the rate of convergence of the truncation coefficients, shifts part of the power
of the higher-degree coefficients to the lower-degree ones (see also (Jekeli, 1980).
Accordingly although the omission error decreases with the introduction of Meissl's
modification, the commission error increases, and that explains the slight degradation of
the results when OSU89B is used as reference model. In case the combined model is
used, the lower-degree harmonics of this model are so accurately determined from GPB,
that the increase of the commission error is overwhelmed by the concurrent decrease of the
omission one, and that accounts for the great improvement achieved by the use of Ha(y)
instead of Hj(y) here.

The increase of the cap size to 4° implies that additional information concerning the
long-wavelengths is contributed by the cap measurements, as compared to the case
y§ =2°. This counterbalances the increased commission error in the case of OSU89B
(going from Hl(\y) to Ha(y)), but, since the cap measurements are not error-free, reduces
the 48% 1mprovement in the case of the combined model, to 39% (increased cap size
implies increased propagated efTor).

2. A comparison of the results for the case (w'g = 2°, Hp(y), GPB/OSU89B) in Table 7,
with the results given in Table 6 for GPB/OSU89B (Nmax = 250), shows the substantial
1mprovemem achieved by the incorporation of terrestrial gravity disturbances around the
computation pomts Such comparison implies that the present accuracies of the higher-
degree harmonics, as well as the resolution that current high-degree expansions achieve,
are only capable of geopotential difference determination at the accuracy level of about 75
kgal cm. If one strives for a 10 kgal cm accuracy level, then, not only terrestrial
gravimetry, but the high-accuracy long-wavelength geopotential determination anticipated
from the GP-B mission are needed. As it can be seen from Table 7, the present
knowledge of the long-wavelength (2 to 45) part of the geopotential spectrum, can only
support geopotential difference determination at the 20 to 30 kgal cm level for the cap sizes
that were considered.
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4.2.2 The Effect of Cap Size and Data Density

The dependence of the accuracy of the estimated geopotential differences on the
extent (cap size) and density of the gravity disturbance measurements in the caps
surrounding the computation points is very important, since precise gravimetric surveys
required to gather the data are rather costly undertakings. In order to examine these
aspects, the error of the estimated geopotential (yg = 0°) and geopotential difference was
evaluated for three cap sizes (yg = 1°, 2° and 4°) and three grid spacings (AyT = 2', 6' and
10"), with the combined GPB/OSU89B model to Nmax = 250 used in all cases as the
reference and with Ha(y) as the cap integration kernel. In all cases a reciprocal distance
error covariance model with variance 4 mgal? and correlation length 0°1 was used. The
results are given in Table 8.

Table 8. Influence of Data Extent (Cap Size) and Data Density on the Error of Estimated
Geopotential and Geopotential Difference. (All Errors are in kgal cm).

AyT

wi | w 2' 6' 10’
1) 139 16.0 6.4

r F 23.8 23.9 24.4
10° 22.5 22.6 23.2

30° 22.5 22.6 23.2

i3 8.7 8.3 95

» F 12.6 12.8 13.7
10° 12.0 12.2 13.2

3P 12.3 12.5 13.5

i3 10.0 10.1 10.7

Vs 5 12.7 12.9 13.8
10° 13.6 13.8 14.7

3P 14.1 14.3 15.1

Vi : temestrial cap size

4 : angular separation between stations
Geopotential Model : GPB/OSU89B (45/250)
Integration Kernel : Ha(y)

Gravity Disturbance Error : 6Xy); mo =2 mgal, y¢=0°1



120
As it can be seen from Table 8 the grid spacing (AyT) has only a minor effect on the

quality of the result. As one passes from the very dense sampling (AyT = 2'), to the
coarser one (AyT = 10"), a degradation of the results by only about 1 kgal cm is observed.
This is due to the fact that the sampling error, for sampling intervals smaller than ~ 10',
has the smallest contribution to the total error of the geopotential and the geopotential
difference. For the cap sizes under consideration (up to ~ 5°) and the reference high-
degree spherical harmonic models used here, the two major sources of error contributing
to the total error budget are the propagated error of the cap data and the commission error
of the model. The little dependence of the total error on the sampling interval (for AyT <
10"), is rather fortunate because it implies cost savings in the data acquisition process.

As far as the cap size is concerned, as it can be seen from Table 8, Yo = 2° yields
the best results for the particular selection of reference gravity model (and its higher
degree) and error properties of the data. It is important to notice that due to the
accumulation of propagated error of the data, the increase of the cap size beyond a certain
value does not improve but degrades the results. Although this appears strange at first
glance (introduction of additional information should not worsen the determination of T
and AT), it is well explained if one takes into account that the kernel Ha(y), used to
evaluate the errors in Table 8, is designed based on deterministic principles with no
explicit requirement to minimize the total error of the geopotential. This aspect will be
reconsidered in section 4.2.4, since it constitutes a major difference between integral
formulae techniques using deterministic kernels and least-squares collocation.

4.2.3 The Effect of the Error Properties of the Gravity Disturbance Data

In view of the difficulties encountered in estimating realistic error properties for the
gravity disturbance data inside the caps, it is important to examine the effect of various
assumptions concerning the behavior of the data errors, on the errors of the estimated
quantities (T and AT). For this purpose, the two error covariance models
G2(y) and G%(y) were used, with different variances (mj = 1, 4 mgals2) and correlation
lengths (y§ = 0°1, 0°5) for the estimation of €T(yg = 0°) and eAT. The results are given
in Table 9. In all cases, the cap size was 2°, the sampling interval was 4', the geopotential
model GPB/OSUS9B to N .« = 250 was used as reference model and HxAy) was used as
integration kernel. Examining the results in Table 9, the following comments can be
made:
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Table 9. Influence of the Error Properties of the Gravity Disturbance Data on the Error of
Estimated Geopotential and Geopotential Difference. (All Errors are in kgal cm).

my = 1 mgal my = 2 mgal ERROR

va | w=001 | ye=0°5 | w=0°1 | v¢=0°5 | MODEL
| 59 8.3 7.1 13.8

| 9.2 12.4 10.8 19.9 o)
1° | 82 11.7 9.9 19.4
¥ | 83 11.8 10.1 19.5
| 64 8.6 8.7 14.4

| 98 12.3 12.6 19.5 oGy
1° | 8.9 11.8 12.1 19.8
30 | 9.1 12.1 12.3 20.3

WE =2 ; AyT=4
Geopotential Model : GPB/OSU89B (45/250)
Integration Kernel : Hy(y)

1. In all cases considered the Gauss-Markov model 3'(2)(\|f) yields more optimistic results

than the reciprocal distance model o0 )(\y) Observing Figure 14a, one can see that the
first-order Gauss-Markov model contains more power of the error below harmonic degree
~ 150, than the reciprocal distance error model does, for the same degree range. Since the
cap data error contribution at the lower degrees is greatly attenuated, due to the very small
magnitude of the coefficients XQxy, (see equation (3.50b)) at these degrees, for a given
variance m§, the Gauss-Markov model 5(2)(w) implies a smaller propagated error, than
the reciprocal distance does. In addition, the difference of the errors implied by the two
models becomes smaller as the correlation length increases, because the increase of y¢
shifts more power of the error ) at lower degrees as it can be seen from Figure 14b.
For example, for mg = 1 mgal2 and y¢ = 0°1, S(Xy) yields an error ~ 8% larger than

3(2)(\41), while the difference is only ~ 3% for \|l°'= 025 (for the same error variance).

2. The error of T and AT is affected more by changes of the error correlation length, than
by changes of the error variance. For example, for m} = 4 mgal?, the error nearly doubles
as the correlation length increases from 0°1 to 0°5, while for y© = 0°1, increasing the
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variance from 1 to 4 mgal? causes only an increase of the error of approximately 26%.
Note also that for the larger variance, an increase of the correlation length causes a quite
larger increase of €T and €AT, than for the smaller variance.

According to the above, larger but less correlated errors in the cap measurements
can be tolerated more than smaller but heavily correlated ones (e.g., systematic errors in
the cap data), as far as the determination of the geopotential differences is concerned.

4.2.4 Comparison Between Error Estimates from Truncation Theory and
from Least-Squares Collocation

The two different techniques for assessing the global rms error of the geopotential
differences, obtained on the basis of a global spherical harmonic model and gravity
disturbance data in the terrestrial caps, are intercompared in this section. For this purpose,
the parameters given in Table 10 were used in the implementation of truncation theory, and
the error eAT was evaluated with both techniques, for two cap sizes (y§ = 2°, 4°), using
the two different error covariance models, for three station separations (ygq = 5°, 10°, 30°).

Table 10. Comparison Between Error Estimates of Geopotential Differences Obtained
from Truncation Theory and Least-Squares Collocation (All Errors are in
kgal cm).

Y= Yo=4°
TRUNCATION L3C TRUNCATION I5C
va | @] | @[ | @] | @]
$ (108 | 126 |87 | 114 | 81 | 127 | 7.3 | 109
00 | 99 | 121 | 84 | 114 | 81 [ 136 | 72 [ 109
w J101 | 123 [ 85 [ 117 | 81 141 ]73 | 112

AyT =4

Gravity Disturbance Error : mg =2 mgal, y¢ =071
Geopotential Model : GPB/OSU89B (45/250)
Integration Kemel : Ha(y)

Examining the results given in Table 10, the following observations can be made:



123
1. The use of least-squares collocation (with ring averages) always yields smaller error
€AT than the use of the integral formula. This is as expected, since Isc is by definition the
optimal linear estimator, in the sense that it minimizes the rms error of the estimates,
among all the other linear estimators, one of which is the integral of Hotine.

2. Increase of the cap size can pever cause increase of €AT in the case of Isc, no matter
what the error properties of the data are. This is not the case when the integral formula is
used, as it was also seen in section 4.2.2, due to the accumulation of propagated error
caused by the increase of the number of measurements.

3. The reciprocal distance error covariance model yields more pessimistic results than the
Gauss-Markov model in the case of Isc, as it was also the case when the truncation theory
was used to estimate the error eAT.

4. The error estimates from the two techniques are generally in good agreement, the
largest difference being on the order of 3 kgal cm (~ 21%).

Finally, summarizing the results of the previous sections, the error analysis
performed here indicates that with the combination GPB/OSU89B model, used to
Nmax = 250, and with gravity disturbance data on a 2° cap, accurate to 2 mgals,
geopotential differences accurate to ~ 12 kgal cm are achievable for stations separated by
30° (about 3300 km). If the error of the cap data reduces to 1 mgal, the corresponding
eAT becomes about 8.5 kgal cm, which is a comparable figure with the current accuracies
of geocentric positions estimated using satellite techniques.

4.3 Introduction of Gravity Disturbance Data at Altitude

The GPS/GPB SST configuration is considered here, as the observational system
that provides the gravity disturbance data at altitude. The long-wavelength reference
geopoténtial model used in the least-squares collocation (with ring averages) error analysis
that is presented next, is assumed to be the product of a global dynamic solution, based on
smoothed values of the SST data, as was discussed in section 2.4. The maximum degree
of this model is taken initially equal to 20 for two reasons. First, to avoid the systematic
errors on the gravity disturbance at altitude, arising from the residual centrifugal
acceleration term 8R|g as explained in section 2.4 (see Table 3), and second, to permit a
higher signal-to-noise ratio for the data at altitude, as opposed to higher degrees of
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truncation. Two different caps sizes (y§ = 5°, 10°) were considered for the data at altitude,
and for each case two different ring spacings were used (AyS = 30', 60). Data density of
onie observation per square degree at altitude, implies an integration interval of about 13
seconds, for the polar 10-day repeat orbit of GPB, based on an approximate formula given
by Jekeli and Rapp (1980). Considering also terrestrial gravity disturbance data in caps of
semi-aperature 2° and ring spacing 6', the error estimates eAT for station separation
W4 = 30° were computed, using also different assumptions for the error properties of the
data at altitude (m§ = 0.4, 0.2 mgal). The results are given in Table 11.

Table 11. Geopotential Difference Errors Implied by the Combination of Gravity
Disturbance Data on the Earth and at Altitude. (All Errors are in kgal cm).

5@y) (e =0%1) SChy) (ye=021)
v$ | AyS| m§=04mgal | 0.2mgal | 04mgal | 0.2mgal
F |30 16.1 13.5 21.2 15.8
60’ 17.6 14.4 21.9 16.2
1° | 30 15.7 12.9 20.2 15.4
60' | 17.2 (15.0) |13.9 (13.2)] 20.8 (15.7) | 15.8 (14.0)

W : cap size at altitude

angular separation between stations W4 = 30°, hgp.g = 600 km

Terrestrial Caps : Y = 2°, AyT=6'

Terrestrial Gravity Disturbance Error : 6Xy), mo = 2 mgal, y¢ =021

Reference Geopotential Model : GPB to Nmax = 20 (Parenthetical Values Computed with
Nmax = 45).

As it can bé'sccn from Table 11, the reciprocal distance error covariance model
5(3)(\|!) yields again the most pessimistic results. This can be attributed to the fact that the
downward éonﬁnuaﬁon process involving the data at altitude, amplifies the error power in
the degree range 150-750, in which range the reciprocal distance error model has more
power concentrated than the first-order Gauss-Markov model (see Figure 14a). Although
the downward continuation amplifies the error power throughout the band, the lower-
degree part is dominated in the above estimation scheme by the reference model, while the
very high part of the error spectrum has small effect on the estimated geopotential

differences.
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Overall, the error estimates given in Table 11 are of comparative magnitude with
those obtained in the absence of the data at altitude. In order to enable a more systematic
comparison between the two cases, in Table 12 the error estimates €AT obtained on the
basis of terrestrial data only, and various reference geopotential models, are summarized.
These were computed using least-squares collocation with ring averages to enable a fair
comparison with the estimates of Table 11. Comparing now the error eAT from Table 11

for the case Nmax = 45, 53Xy), m = 0.4 mgal, y§ = 10°, AyS = 60' (15.7 kgal cm), to
the corresponding 16.9 kgal cm from Table 12, one can see that an improvement of about
7% is achievable by the introduction of the data at altitude. Although small, such an
improvement indicates two things:

(a) The error properties assigned to the data at altitude according to the reciprocal distance
error covariance model with variance 0.4 mgal and correlation length 0°1, appear to
provide a realistic assessment of the quality of them. A larger improvement would imply
that the error properties assigned to these data are too optimistic and in disagreement with
the error budget based on which the error estimates of the global geopotential solution
GPB were derived.

Table 12. Geopotential Difference Error €AT Implied by Current and Future Reference
Models and Terrestrial Gravity Disturbance Data in a 2° Cap.

€AT (kgal cm)

Model | Wi | Nmax=25| Nmax=45 | Nmax=250
46.7 227 183
OSU89B | 1(°P 48.9 26.7 23.2
| 3P 474 26.5 23.3
TOPEX/ | ¥ 45.8 20.1 16.0
OSU89B | 10° 46.8 20.5 16.9
(25/250) | 3P 45.0 20.3 16.5
GPB/ F1 456 16.9 114
OSU89B | 10° 46.5 16.7 11.4
(45/250) | 3P 44.8 16.9 11.7

v =2°AyT =6

Gravity Disturbance Error : 3(3)@1), me = 2 mgal, y¢ =0°1
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(b) The introduction of the data at altitude provide a better configuration for the estimation
of the geopotential differences, as compared to the use of terrestrial measurements only.

Using pessimistic error estimates as a guideline, one can conclude that
measurements from the Gravity Probe B mission (in combination with terrestrial gravity
disturbance data in 2° caps) are capable of providing geopotential differences over
intercontinental distances, accurate to about 15 to 17 kgal cm. This estimate is an order of
magnitude better than what can be achieved using the traditional vertical connections based
on MSL monitoring (about 150 kgal cm). However, lacking gravitational information in
the medium frequency band (45 < n < 250), the results from GPB are about 5 kgal cm
worse that those obtained when GPB is augmented by OSU89B in this spectral band (EAT
= 12 kgal cm). It should be mentioned though that such augmentation does not guarantee
that the estimated geopotential differences are totally free of systematic errors arising from
vertical datum inconsistencies, since the harmonics of OSU89B above degree 45 may be
contaminated by such errors. To enrich the satellite observations with medium frequency
gravitational signal, requires either a lower flying altitude, or additional on-board
instrumentation capable of measuring higher-order gradients of the gravitational potential,
and in this direction the ARISTOTELES mission may provide a significant contribution.

Finally, it should be emphasized here that the error estimates evaluated for the
geopotential differences in this chapter, account for errors of the reference geopotential
model and the gravity disturbance data only. Additional error contribution to the
geopotential difference will arise due to random errors of the geocentric positions of the
stations and due to a systematic offset of the origin of the coordinate system from the
geocenter, as discussed by Colombo (1980) and Hajela (1983). Random position errors
at the £ 5 cm level (Smith et al., 1985) have small effect on the estimated geopotential
differences, while the systematic error due to non-geocentricity of the reference frame can
have significant effect on the intercontinental connections.






CHAPTER V
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The problem of estimation of geopotential differences over intercontinental locations
was re-examined, in order to assess currently achievable accuracies and future anticipated
improvements. Accurate estimation of the geopotential differences between points located
at different continents, imply the unification of the vertical datums established in them,
which at present are defined based on MSL monitoring and thus are (in general)
inconsistent due to the presence of the Quasi-stationary Sea Surface Topography.

A review of the proposed techniques for the unification of vertical datums, in
conjunction with anticipated future satellite missions and in view of the accuracies
achievable at present for geocentric positioning, indicated that approaches based on the
combination of gravitational information with high accuracy geocentric positioning, are
favored at present and in the near future for practical implementation. In this direction,
extending the ideas put forward by Colombo (1980), an observational setup was
proposed, whereby gravity disturbance measurements on the Earth’s surface, in caps
surrounding the estimation points, are combined with corresponding data in caps directly
over these points at the altitude of a low orbiting satellite, for the estimation of the
geopotential difference between the terrestrial stations. The gravity disturbance data at
altitude are inferred from GPS measurements made from the low orbiter to the high-
altitude GPS satellites, in a multiple-high-single-low Satellite-to-Satellite Tracking
configuration. In the absence of actual measurements, the performance of such an
observation/estimation scheme was evaluated by conducting an error analysis study.

The mathematical modeling required to relate the primary observables to the
parameters to be estimated, was studied both for the terrestrial data and the data at altitude.
Emphasis was placed on the examination of systematic effects and the corresponding
reductions that need to be applied to the measurements to avoid systematic errors. For the
gravitational accelerations inferred from SST data, it was discovered that the magnitude of
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a centrifugal acceleration term (8R;o) was underestimated by several orders of magnitude
in the past as a result of an erroneous derivation. The previous formulation implied a
magnitude of 8R;, about 7 x 103 times smaller than the current corrected formulation. It
was shown in this study that in order to keep the systematic effect arising from 8R;, at the
20 pgal level, a reference geopotential model complete to degree 20 is required (high-low
SST configuration). Previous analyses, based on the erroneous formulation, were
indicating that a reference model complete to degree 4 is adequate to keep the residual
systematic effect of 8Rjg at the 10 pigal level. For a given noise level (0.4 mgal) of the
data at altitude, increase of the maximum degree of the reference model, significantly
affects the ratio of the residual signal to the noise.

Two different techniques were considered for the estimation of the global mean
square error of the geopotential differences. Error propagation using truncation theory, as
applied to Hotine’s integral formula, and the least-squares collocation using ring averages
as input data. Both techniques are applicable in case observations on the Earth’s surface
only are involved in the geopotential difference estimation, but only 1sc can handle
efficiently the over-determined case when observations at altitude are added. Alternative
formulations related to the sampling (or discretion) and the propagated errors arising in the
truncation theory considerations were derived. These are characterized by the same
computational requirements as the previous formulation by Christodoulidis (1976), while
they provide a more consistent interpretation of the underlying physical principles that give
rise to these errors. In an attempt to apply truncation theory principles for the assessment
of the contribution of gravitational acceleration data at altitude, to the estimation of
geopotential differences on the Earth's surface, recurrence relations for the altitude
generalized truncation coefficients implied by Hotine's kernel were developed for the first

time.

Both techniques (truncation theory and Isc) require for their implementation a-priori
knowledge of the global properties of the signals and the noise involved in the estimation
and to this end different covariance models were considered and their spectral
characteristics were compared. In addition, an efficient recurrence relation for the degree
variances implied by a first-order Gauss-Markov covariance model was developed for the

first time in this study.
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For the numerical analysis, three global geopotential solutions were considered as
reference models. The currently available OSU89B high-degree harmonic expansion, and
the global models anticipated to become available from GPS tracking data of the
TOPEX/Poseidon and the Gravity Probe B spacecrafts respectively. Augmentations of the
latter two models with higher-degree harmonics from OSU89B were also considered. A
number of numerical experiments were performed that lead to the following conclusions:

(@) The currently available global geopotential model OSU89B alone is expected to yield
geopotential differences between stations separated by 30°, accurate to about 86 kgal cm.
The future models (augmented by OSU89B) can improve this accuracy to about
81 kgal cm (TOPEX/OSU89B) and 74 kgal cm (GPB/OSU89B) respectively.

(b) Introduction of gravity disturbance measurements in terrestrial 2° caps
reduces the previous error estimates to the following: 23 kgal cm (OSU89B), 17 kgalcm
(TOPEX/OSU89B) and 12 kgal cm (GPB/OSU89B), when pessimistic error estimates are
used for the gravity disturbance measurements (mg = 2 mgal). With mg = 1 mgal the case
GPB/OSU89B yields an error of about 9 kgal cm for 30° station separation. The error
estimates for these cases were computed using both truncation theory and lsc (ring
averages) and the results from the two techniques were compared. It was found that the
Isc error estimates are always smaller than the ones obtained from truncation theory, as
mandated from theory. The largest difference between the two error estimates was found
to be about 21%.

(c) When gravity disturbance data at the altitude of GP-B (about 600 km) were
introduced, a moderate (7%) improvement in accuracy, over the corresponding case
without such data, was found. In both cases, the reference geopotential model used was
complete to degree 45, obtained from the analysis of the GPS tracking data on GP-B.
However, gravity disturbance data at this altitude are unable to resolve medium and high
frequency variations of the gravity field and thus the result in this case is inferior by about
5 kgal cm to the result obtained from the combined GPB/OSU89B high-degree model
(complete to degree 250).

To enrich the data at altitude with more high-frequency information, it is
recommended here that additional measurements of a higher-order gradient of the
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disturbing potential made from a lower flying spacecraft, be incorporated in the estimation.
In this direction, the gradiometer data from ARISTOTELES mission can provide a
significant contribution. In addition, it should be emphasized that the error estimates
reported here correspond to a "worst-case" scenario where only one pair of benchmarks is
considered for the intercontinental connection. Additional benchmarks on each continent,
connected with leveling lines, can provide a better network configuration and yield an
improvement on the accuracy of the intercontinental connections up to 25%, as the study
by Hajela (1983) has indicated.

Finally, the results reported here are promising enough to warrant an actual testing
of the technique. For this purpose, stations whose geocentric coordinates are accurately
known (e.g. SLR sites or VLBI stations connected to a geocentric system using GPS) and
between which the geopotential difference has been estimated independently using spirit
leveling and gravimetry can be used as test sites. At present (1991), collection of gravity
disturbance measurements (using relative GPS positioning and gravimetry) in caps
surrounding these test sites, will enable testing of the procedure described in section 4.2.
As it was discussed in that section, a cap size of 2° and an approximate spacing of 6'
between the points where the gravity disturbances are determined, are optimum parameters
for the observational setup, provided a state-of-the-art high-degree global geopotential
model (e.g. OSU89B) is used as reference. In the actual implementation, least-squares
collocation using the original gravity disturbance data (as opposed to ring-averages)
should be used to maintain highest computational rigor. In addition, detailed elevation
information around the test sites should be used for the consideration of the terrain effects
by means of analytical continuation, as it was discussed in section 2.3.

In a more future time frame (1995), the availability of the data from the anticipated
satellite missions (TOPEX/Poseidon, Gravity Probe-B, ARISTOTELES), will enable to
improve the above scheme in two ways. First, by the use of global geopotential models
with more accurately estimated lower-degree harmonics than those of OSU89B, as such
models will become available from the analysis of the global sets of observations collected
by these missions, and second by the use of gravitational information in caps at altitude
(GP-B, ARISTOTELES), as discussed in section 4.3.



APPENDIX A

RECURRENCE RELATIONS FOR THE TRUNCATION COEFFICIENTS IMPLIED
BY PIZZETTI'S EXTENSION OF HOTINE'S KERNEL

The development of recurrence relations for the coefficients Qn(R/p Vo), defined by:

L4
QuRk, o) = f H(R}, )Py, (cosy)sinydy ; T2R (A1)
Vo
is based on recurrence relations of the Legendre polynomials. Denoting Pn(t) (or simply
P,) the nth - degree Legendre polynomial, and Py(t) (or simply Py) its first derivative
with respect to the argument t, the following relations hold true (Hobson, 1965, Ch. II,
Sect. 20):

nPp = - (n-1)Pp2 + 2n-1)tPp. - (A2)
(20 + 1)Pp = Pgy1 - P (A.3)
(1- )P = n(Pp-1 - tPp) (A4
Pp(- D=(C- D" (A.5)

The following notation is introduced:

R

k=-r— ; 0<k<1 (A.6)
t = cosy ; -1€t<1 (A.7)
D2=1-2kt+k2 (A-8)

Accordingly, Pizzetti's extension of Hotine's kernel takes the closed form:

=2k _1n/Dtk-t .
H(k.t) = 2K ln( tk ) el A9
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and the series expansion form:

Hkty = 3, Atlin+1p )
n=0 (A.10)

With the change of integration variable from v, to t = cosy, and the substitution
X = COSY, equation (A.1) becomes:

Qnlk,x) = f H(k,t) Py(tdt
-1 (A.11)

or, due to (A.9):

I B X
Quk,x) = 2k j - f m{—;kt—l P,()dt
" 1 (A.12)

It will be understood in all subsequent derivations that W, # 0 so that x # 1. The case
Yo = 0 will be considered separately at the end.

For the purposes of the subsequent derivations, a number of auxiliary quantities

are defined next:
I(x) =I P, (Ddt (a)

-1
L (k,x) = f P—’I‘)(t—)dt (b)

-1
(A.13)
: X0
» = _d

K, (k.x) I D t ©

M, (k,x) = f Ergfl dt | @

-1
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To develop recurrence relations for Qn(k, x), one starts with recurrence relations for

some of the auxiliary quantities defined before.

From (A.2) one has:

Pp(x) = % [(2n - 1) xPn.1(x) - (n-1)Pp-2(x)] ;n22 (A.14a)

which, with starting values:
Po(x) =1 ; Pix)=x (A.14b)

establishes a recurrence relation for the Legendre polynomials.

From (A.3) and (A.S) one has:

1) = 357 [P+ 109 - P 1(x)] i n21 (A.15)

Although equation (A.15), along with the recurrence (A.14a,b), are sufficient to evaluate
In(x), an independent recurrence for In(x) may be developed as follows. Equation (A.15)
is written as:

- (0- Dl 2(0) = - R=2Py 100 + L=ZPy 5(x)

2n-3 (A.16)
In addition, from (A.15) one has:
(2n - DxIy . 1(x) = xPy(x) - xPy . 2(x) (A.17)
Now, from equation (A.2) one may write:
xPa(x) = LELPy 1 100 +5-0—Py 1 (%) (A.183)

and:

) —.n-1, _._IL-_Z_
XPH-Z(X) 2n_3Pn-1(x) 2n_3Pn-3(x) (A.18b)
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Adding by parts (A.16), (A.18a) and (A.18b), and taking into account (A.17), one has:
20 - Dxlp 10 - (0 - DTa.2(0) = AP 160) - P 1)

which, due to (A.15), finally establishes the following recurrence for I,(x):
L= n_+L1—[(2n - DxIpy (x) - (n - 2)[p2(X)] ; n22 (A.19a)
with starting values:
Io(x)=1+x ;o L(x) =%(x2 -1) . (A.19b)

For Ly(k, x), due to (A.3), one has:

[XP' xP.
’ =1 n+l g¢ . [ En-t
Latk, x) 2n+1J1 D dtf p &

-1

so, due to (A.13d):

L'(k, X) =2—nL+—1{Mn+ 1K, X) - My .1(k, x))] (A.20)

With dv = Pp(t)dt (v = Pp(t)), and w = D1 (dw = kD-3dt), integration by parts yields for
M, (k, x):

My (K, x):P]")(:) ] (g_i);) - KKk, x) (A21)
where:-
Dy=(1-2kx +k3)" (A.22)

Equations (A.20), (A.21) and (A.15), yield for Ly(k, x):

L’,,(k,x):jfT[K;m(k,x)-K;_l(k, x)]+%’9 D21 (A23)
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Consider Kn(k, x) next. The definition (A.13c) and equation (A.2) imply:

X
(m+ DK, +nK, ,=Qn+ 1)j %@dt
= (A.24)
However, it can be easily verified that:
t_1+Kk2[1 . 1 ]
D3 2k D DU +K? (A.25)

Due to (A.25), the right-hand side of (A.24), becomes:

X X
(n + 1)j &(_Odt =(2n+ 1)1_3'121&31(“ _2n+ II P’ét)dt
- -1

: D3 2k

so that, taking also into account the definition of La(k, x), equation (A.24) becomes:
2k[(n+ DK, + nK;_1]=(2n+ 1)[(1 +k2)K;,-L',,] (A.26)

Eliminating Ly, from equations (A.23) and (A.26), one obtains:

KK, , (k) - (1+ KK 0 + KK, (o =-2 jn2l  (A2))

In addition, direct integration yields:

r

gt 1.
. (A.28)
o 1 kt+k?) (b)
J D kD
Hence, a recurrence relation for Kn(k, x) may be established as follows:
K0 =LK, (0 -K, ke 0)- B n22 (A.292)
X



. . 136
with starting values:

x r
Kow=k| 1 K= Ll-k+ kﬁ)lx (A.29b)
-1 kD 1

One may now express Kns1(k, x) in terms of Kn(k, x) and Kp.1(k, x) from equation
(A.29a), and then substitute this expression in equation (A.23), so that finally the
following recurrence relation is established for La(k, x):

Lo, x) = El_;—l—[ZkK;\_l(k, x) - (1 + kK (k, x) +2(n + 1)I']‘§—x)} ;n22  (A.30a)
X
with starting values:
Lkx=-2 ; Lkx=-Ld+k +k2)|x (A.30b)
kil 3k2 q

which were obtained by direct integration applied to the definition of Lq(k, x) given in
(A.13b). Notice that the recurrence (A.30a) may actually start from n = 1, however, it is
computationally convenient to start it from n = 2, the same degree from which the Py(x),
In(x), Kn(x) recurrence relations start.

With the previous derivations as a background, one proceeds now with the
development of recurrence relations for Qn(k, x), as follows. From equations (A.12) and
(A.13b) one has:

Qak, x) = 2kL,(k, x) - f In (D—;_kt;l) Py(t)dt
-1

Define:

R (k, x) = - I ln(Q%_-Kt‘—L)Pn(t)dt (A.31)
-1

so that the previous equation becomes:

Qu(k, x) =2kL, (k, x) + R (K, x) :n20 | (A32)
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Due to equation (A.2), equation (A.31) becomes:

R,=-0=lR ,-20-1 Il m(D-—k—lf_t- )tP,,_l(t)dt

which due to (A.4) becomes:

‘=R . +-2n-1 -)P D+k-t

The integral on the right-hand side of (A.33) may be evaluated using integration by parts.
Let:

dv = B (0dt = v=Pp1(t) (A34)
and:

w=(l- :2)1n(D—+_k—t-t)

1 (A.35a)
It is a matter of algebraic manipulations, to show that:
=|- D+k-ty ki L
dw=[-20m(Bph=t) + K - L v 1]ar (A.35b)
Hence, integration by parts in equation (A.33) yields:
"R . +20-1 (1. x2)nPatk-x
Ry =Ry + 20-L (1 - aOaE X Py )
2@n-1) oy 2p-1 4 _2n-1
* n(n- 1) Bt n(n-1) An1 n(n-1) To-1(x) (A.36)
where:
X
A= j klﬁl P, (t)dt
1 (A37)

and:

(A.38)
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For By, due to equation (A.2) and the definition (A.31) one has:

r — . n ,
Boy 2n-1 Rn- 2n 1R"2 (A.39)

For A, due to the definition (A.13b) one has:

Anl—k[ L Py i(dt-L

which due to equation (A.2) becomes:

A;*-lz{znn- 1 f Pl el f eala)-1,

which finally becomes:
_Zn__1_=[__1_1]_2n_1_
a1y A1 KT Dt Lna ¥ Ty T (A.40)

Substituting (A.39) and (A.40) in equation (A.36), one obtains the following recurrence
relation for Rp(k, x):

R (k, x) = —(—l;ﬁ{(n 2)(n- DR, ,(k, x) +(2n - 1)(1 - xz)ln(P—5+—I(——x) Pp.1(x)

[nL k,x)+(n- 1)L ok, x)]

+@n-D[L G -Ta® ]| n22 (A41)

which requires starting values for Ro(k, x) and Ri(k, x). These may be obtained by
direct integration applied to equation (A.31) that defines Rn(k, x). Let:

r;(k, t)= -I In (QTt-ItLL) dt
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y = - D+k-t
rl(k,t)_ jtln -1 )dt

It can be shown that:

rk, t)=§1k—[D2 1n(llf—kt—l) ~(1+k2In@+k+1)+(1-k2In@ -k +1) +2kD]

(A.422)
r'l(k, t)=§1E{k[1n(D +k+1)-In(D-k+1)] -12[132-D2+ (1-k2) D]
-kl D%kt—t) | (A.42b)
so that the starting values Rg(k, x) and Rj(k, x) are given by:
Rifk, x) =7k, 0 @
Rifk, ) =100 () A

The recurrence relation for Rp(k, x) was the last relation required to establish a
recursive algorithm for the computation of the truncation coefficients Qnu(k, x). In
summary, for Yo # 0 (x = cosyg # 1), the recursive evaluation of Qn(k, x) is

accomplished by computing the following quantities:

1. Pp(x) from equations (A.14a, b)

In(x) from equations (A.19a, b)

Kn(k, x) from equations (A.29a, b)

Lqn(k, x) from equations (A.30a, b)

Ru(k, x) from cquatibns (A.41) through (A.43)

o w s W

Finally Qn(k, x) is given by equation (A.32)
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Two issues concerning the above recurrence should be mentioned:

a) The recurrence for Kq(k, x) is only required for the evaluation of La(k, x). In the
special case that r = R (i.e. k = 1), Jekeli (1979) has succeeded in eliminating Kak, x)
from the recursive algorithm, by manipulating equations corresponding to (A.29a) and
(A.30a). However, this technique cannot be applied in the current case where k assumes

arbitrary values in the interval (0, 1].

b) Although mathematically correct, and useful for low altitude applications, the
recurrence presented here for Qu(k, x) has numerical instability problems for high altitude
cases. The instability is introduced to the algorithm through the use of equation (A.29a)
that determines Kp(k, x). As it can be seen from (A.29a), the division by k introduces
numerical problems as k—0 (i.e. as the altitude increases). Through numerical tests
(using double precision arithmetic) it was verified that for altitude equal to 600 km, and
Vo as small as one degree, the coefficients Qu(k, x) become unreliable after n = 600.
This problem is of the same nature with the numerical instability encountered by
Shepperd (1979) in the recurrence relation which he derived for the altitude generalized
truncation coefficients corresponding to Stokes' kernel (ibid, p. B-3).

Finally , to complete the determination of Qp(k, x), one needs to derive the
expression for Qp(k, 1), i.e. consider the case Y, = 0 (x = 1), which was excluded from
the above algorithm. Although H(k, t) has a singularity at t = 1 (see equation (A.9)),
Qn(k, x) is nevertheless well-defined for x = 1. Taking into account equation (A.10), it
can be easily seen that:

.____2_ n+1l . >
Qll, 1) = 7k > n20 (A.44)



APPENDIX B

TRUNCATION COEFFICIENTS IMPLIED BY THE
KERNEL H*(k, t) = H(k, t) - k - %kzt

In case the gravity disturbance, 8g(r, 8, A), contains no zeroeth- and first-degree
terms, one needs to determine the truncation coefficients Qp (k, x) implied by the kernel

* function H*(k, t), where:

. = Sk-2k2
H*(k,t) =Hk, t) - k 2kt (B.1)

or, in series expansion form:
H'(k, ) = 3, 20+ L pn+1p ()
a2 01 (B.2)

The truncation coefficients Qp (k, x) are defined by:

X

Qi(k, x) =f H*(k,0) P, (6t
1 (B.3)

or,

Qik, x) = Qu(k, x)-kf Pn(t)dt-%kz I tPy(D)dt
1 1 (B.4)

Utilizing the results of Appendix A, one has from (A.13a):

f Py(t)dt = In(x)
-1 _ (B.5a)
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while, due to equation (A.2):

X
—n+1 _n
I ltPn(t)dt P Li(x) + 50 I.1(x)

The last equation, due to (A.19a), may be rewritten as:

] tP(t)dt = xIn(x) + _1—1,, (%)
(B.5b)

Due to (B.5a,b) equation (B.4) finally becomes:

Q(k, ) = Qu(k, X) - |KIn(x) + 51%1?3_4[(“ DxI(x)+ Ta(x)] | ; 22  (B.6)

and, along with the starting values:

Q0= Qe 0 -[kx + 1y + 2 (2-1) (o

(B.7)
Q0= n-E@@-n+E (@+1)] @)

(which have been obtained by direct integration performed in equation (B.4)) defines the
recurrence relation required to evaluate the coefficients Qu(k, x), from the already derived
recurrences for Qu(k, x) and I(x) (see Appendix A).

The recurrence relation (B.6) is valid regardless of the value of y,. If Yo =0,
then Qq(k,1) in (B.6) are obtained from equation (A.44); otherwise the Qn(k, x) are
obtained from equation (A.32). If one rewrites equation (B.4) as:

.

o) Pa(tc gwfpmmmm ®8)

-1

X

Qu(k, x) = Qn(k, x) - kf
1

which is valid for n = 0, then it can be seen easily that:

(@) Qik, )=Quk,1) forevery n22

®) Qik, 1) = Qj(k, 1) =0, while Qik, x) and Qj(k, x) are not equal to zero for x # 1.



APPENDIX C

DEGREE VARIANCES OF A FIRST-ORDER GAUSS-MARKOV
PROCESS ON THE SPHERE

Consider the homogeneous and isotropic first-order Gauss-Markov stochastic
process on the sphere, defined through its covariance function:

oy)=cerv ; ¢>0,A>0 (C.1)

where v is the spherical distance in radians. The degree variances of the above

covariance function constitute the power spectrum of the process, and are given by the
Legendre transform of o(y). Using unnormalized spherical harmonics, due to isotropy,

one has for the degree variance at degree n:

T 2r
op=20+1 I j 6(y)Pa(cosy)sinydydor

4n
¥=0 Jo=0 (C.2)

or, due to (C.1):

T
O =20+ 1 cj e AP, (cosy)simydy
0 (C.3)

4
A,,().) = I expl-Aw)Pn(cosy)sinydy
0 (C4)

so that G, is given by:

o,=2n+tl cAn(X)

2 (C.5)
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One proceeds next with the derivation of an expression for Ap(A). Changing the variable

from Y to t = cosy, one has from (C.4):

1
An(l) = j exp(-Acos 1t)Py(t)dt

-1

which, due to equation (A.3) of Appendix A, yields:

1
An(K) = 2n{|~ III exp(-Acost)(P ., - P ,)dt <6

With w = exp(-Acos-1t) (hence dw = Aw (1 - t2)-172dt), and dv = (P;j4+1 - Py.1)dt (hence

v = Pp41(t) - Pp-1(1)), integration by parts in equation (C.6), yields:

1
An(x) - __-L_f exp('lcos_lt)(l - t2)-1/2 (Pn.1 - Pryp)dt
1

2n+1
CD

where, in deriving (C.7), use was made of equation (A.S5) of Appendix A. From
Hobson (1965, equation 20.36), one has:

@2n + 1) - P, =n{n + 1)(Ppy1 - Ppy) (C.8)

according to which, equation (C.7) becomes:

1
An(l) = (nﬁ 0 f 1 exp(-Acos- )1 - tz)l/zP;dt <o)

Now let:

w = exp(-Acos1t)1 - t2)1/2

so that:

dw = exp(-lc:OS'lt)[k -f1-¢) lz]dt

and, dv = Py dt (hence, v = Py(t)). Then, integration by parts in equation (C.9) yields:
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1
An(K) = n(fﬁ)‘Ul exp(-Xcoslt)(l - l/2tP,,dt - M,,(x)}

which, due to equation (A.4) of Appendix A, yields:
f 1

An()‘) —"L_ J

= Aeaclnf1 - 2F A
ol | o Acos-16(1 - &) 2P, dt

rl
- _111} exp(-Acos- 1)1 - tZ)I/ZP;dt - M,.(X}}
1

which, taking into account equation (C.9), reduces finally to:
1
[(n+ 12 +22a ) =2 I exp(-Acos (1 - 2 2P, ydt (C.10)
-1

Evaluating (C.10) for n = n - 2 and subtracting (C.10) from the corresponding equation,
one obtains:

1

[(n -1P + lz]A,,_z(l) - [(n +1P + AZ]AH(A) =i I exp(-Acos-1t)1 - 12)° 1/2(P,1_3 - Ppq)dt
-1

The right-hand side of the last equation equals, due to (C.7), to (2n - 3) Aj.2(A) so that

the preceding equation, after the algebraic simplifications, yields:

2 *
Afp) =202 4 )
A +(m+1)2 (C.11)

Considering now equation (C.5), it can be easily seen that the degree variances of o(y)
may be evaluated from the following recurrence relation:

2
on=22n+31 A'2+(n_2)2 Cn2 n=2
=2 2%+ (n+ 1)? (C.12)

which requires starting values for G, and 6;. These are obtained by direct integration

performed in equation (C.3) which yields:



146

(C.13)
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